B题打错调了半天,C题想出来来不及打,还好没有挂题

AC:AB Rank:96 Rating:2125+66->2191

A.Berzerk

题目大意:有一个东东在长度为n的环上(环上点编号0~n-1),两个玩家,玩家1有a种操作可选,玩家2有b种操作可选,每种操作可以让这个东东向前走若干步,两个玩家轮流操作,谁先让东东走到0谁胜,求出双方都选最优操作的情况下,东东开始在1~n-1各位置时玩家1先手和玩家2先手会必胜,必败还是无限循环。(a,b<n<=7000)

思路:类似DFS或者BFS的乱找,每次确定一个必败状态时,能到该状态的所有状态都为必胜态,一个状态能到的所有状态都确定为必胜时,该状态必败,用数组记下每个状态还有几个能到的状态未被确定即可,最后无法确定的状态即为循环,总复杂度O((a+b)n)。

#include<cstdio>
char B[<<],*S=B,C;int X;
inline int read()
{
while((C=*S++)<''||C>'');
for(X=C-'';(C=*S++)>=''&&C<='';)X=(X<<)+(X<<)+C-'';
return X;
}
#define MN 7000
int n,s[],t[][MN+],u[MN*+],q[MN*+],l[MN*+],qn;
int d(int x,int y){return x*n+(y+n)%n;}
void lose(int);
void win(int p)
{
int x=p/n,y=p%n,i,v;
x^=;u[p]=;
for(i=;i<=s[x];++i)
{
v=d(x,y-t[x][i]);
if(!u[v]&&++l[v]==s[x])lose(v);
}
}
void lose(int p)
{
int x=p/n,y=p%n,i,v;
x^=u[p]=;
for(i=;i<=s[x];++i)
{
v=d(x,y-t[x][i]);
if(!u[v])win(v);
}
}
int main()
{
fread(B,,<<,stdin);
int i,x,y;
for(n=read(),x=;x<;++x)for(s[x]=read(),i=;i<=s[x];++i)t[x][i]=read();
u[n]=;lose();lose(n);
for(i=;i<n;++i)printf("%s ",u[i]?u[i]>?"Win":"Lose":"Loop");puts("");
for(i=;i<n;++i)printf("%s ",u[i+n]?u[i+n]>?"Win":"Lose":"Loop");
}

B.Legacy

题目大意:n个点,一个人一开始位于s,有q个走法供他选择,走法有3种种类:1.从v到u,花费w;2.从v到l~r中的一个点,花费w;3.从l~r中的一个点到v,花费w,求到各个点的最短路。(n,q<=100,000)

思路:线段树优化建图。第一类边直接连;第二类我们建一棵线段树,所有父亲向儿子连长度为0的边,表示到了该区间也能到达该区间中的点,每次我们让v连向表示[l,r]的O(log)个线段树节点即可;第三类我们再建一棵线段树,所有儿子向父亲连长度为0的边,这样每个点就能到达所有表示包含它的区间的线段树节点,每次我们让表示[l,r]的线段树上节点连向v即可。跑Dijkstra,总复杂度O((n+q)logn^2)。

#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
#define ll long long
char B[<<],*S=B,C;int X;
inline int read()
{
while((C=*S++)<''||C>'');
for(X=C-'';(C=*S++)>=''&&C<='';)X=(X<<)+(X<<)+C-'';
return X;
}
#define MN 100000
#define N 131072
#define MV 524288
#define ME 5000000
#define d(x,y) make_pair(x,y)
struct edge{int nx,t,w;}e[ME+];
int h[MV+],en;ll ds[MV+];
typedef pair<ll,int> data;
priority_queue<data,vector<data>,greater<data> >pq;
inline void ins(int x,int y,int w){e[++en]=(edge){h[x],y,w};h[x]=en;}
void ins1(int l,int r,int f,int w)
{
for(l+=N-,r+=N+;l^r^;l>>=,r>>=)
{
if(~l&)ins(f+N,l+,w);
if( r&)ins(f+N,r-,w);
}
}
void ins2(int l,int r,int t,int w)
{
for(l+=N-,r+=N+;l^r^;l>>=,r>>=)
{
if(~l&)ins(l++(N<<),t+N,w);
if( r&)ins(r-+(N<<),t+N,w);
}
}
int main()
{
fread(B,,<<,stdin);
int n,m,i,s,a,b,c,d;ll x;
n=read();m=read();s=read();
for(i=;i<N;++i)
{
ins(i,i<<,);ins(i,i<<|,);
ins(i+N<<,i+(N<<),);ins(i+N<<|,i+(N<<),);
ins(i+N,i+N*,);ins(i+N*,i+N,);
}
while(m--)
{
a=read();b=read();c=read();d=read();
if(a==)ins(b+N,c+N,d);
if(a==)ins1(c,d,b,read());
if(a==)ins2(c,d,b,read());
}
memset(ds,,sizeof(ds));ds[s+N]=;pq.push(d(,s+N));
while(pq.size())
{
a=pq.top().second;x=pq.top().first;pq.pop();
for(i=h[a];i;i=e[i].nx)if(x+e[i].w<ds[e[i].t])
{
ds[e[i].t]=x+e[i].w;
pq.push(d(ds[e[i].t],e[i].t));
}
while(pq.size()&&pq.top().first>ds[pq.top().second])pq.pop();
}
for(i=;i<=n;++i)printf("%I64d ",ds[i+N]<ds[]?ds[i+N]:-);
}

C.Till I Collapse

题目大意:给定n个数,对于每个1<=k<=n,求把数列分成若干段,每段数字种数不超过k,至少分几段。(n<=100,000)

思路:对于k<=n^0.5,我们每次O(n)暴力统计答案,对于k>n^0.5,我们先预处理出k=n^0.5时分成的至多n^0.5段,每段的右端点和各种数字的出现次数,每次把所有右端点向右推即可知道k+1时的信息,右端点每向右推一位我们都只要O(1),总复杂度O(n^1.5)。

#include<cstdio>
inline int read()
{
int x;char c;
while((c=getchar())<''||c>'');
for(x=c-'';(c=getchar())>=''&&c<='';)x=(x<<)+(x<<)+c-'';
return x;
}
#define MN 100000
#define MK 320
int a[MN+],f[MK+][MN+],cnt[MK+],r[MK+],ans;
int main()
{
int n=read(),i,j,k;
for(i=;i<=n;++i)a[i]=read();
for(i=;i<=n&&i<=MK;++i)
{
for(ans=j=;j++<=n;)
if(j>n||(!f[][a[j]]++&&++cnt[]>i))
{
for(k=j>n?n:j;cnt[];--k)if(!--f[][a[k]])--cnt[];
if(j<=n)f[][a[j]]=cnt[]=;++ans;
}
printf("%d ",ans);
}
if(i<=n)
{
for(ans=j=;j<=n;r[ans]=++j)
if(!f[ans][a[j]]++&&++cnt[ans]>i)
{
--f[ans][a[j]];--cnt[ans];
++f[++ans][a[j]];++cnt[ans];
}
printf("%d ",ans);
}
for(++i;i<=n;++i)
{
for(j=;j<=ans;++j)
{
for(k=r[j];k<=n;r[j]=++k)
{
if(!--f[j+][a[k]])--cnt[j+];
if(!f[j][a[k]]++&&++cnt[j]>i)
{
if(!--f[j][a[k]])--cnt[j];
if(!f[j+][a[k]]++)++cnt[j+];
break;
}
}
if(k>n)ans=j;
}
printf("%d ",ans);
}
}

Codeforces Round #406 (Div. 1)的更多相关文章

  1. Codeforces Round #406 (Div. 1) B. Legacy 线段树建图跑最短路

    B. Legacy 题目连接: http://codeforces.com/contest/786/problem/B Description Rick and his co-workers have ...

  2. Codeforces Round #406 (Div. 1) A. Berzerk 记忆化搜索

    A. Berzerk 题目连接: http://codeforces.com/contest/786/problem/A Description Rick and Morty are playing ...

  3. 维护前面的position+主席树 Codeforces Round #406 (Div. 2) E

    http://codeforces.com/contest/787/problem/E 题目大意:给你n块,每个块都有一个颜色,定义一个k,表示在区间[l,r]中最多有k中不同的颜色.另k=1,2,3 ...

  4. 区间->点,点->区间,线段树优化建图+dijstra Codeforces Round #406 (Div. 2) D

    http://codeforces.com/contest/787/problem/D 题目大意:有n个点,三种有向边,这三种有向边一共加在一起有m个,然后起点是s,问,从s到所有点的最短路是多少? ...

  5. 有向图博弈+出度的结合 Codeforces Round #406 (Div. 2) C

    http://codeforces.com/contest/787/problem/C 题目大意:有一个长度为n的环,第1个位置是黑洞,其他都是星球.已知在星球上(不含第一个黑洞)有一位神.有两个人, ...

  6. 【转】Codeforces Round #406 (Div. 1) B. Legacy 线段树建图&&最短路

    B. Legacy 题目连接: http://codeforces.com/contest/786/problem/B Description Rick and his co-workers have ...

  7. Codeforces #Round 406(Div.2)

    来自FallDream的博客,未经允许,请勿转载,谢谢. ------------------------------------------------------- 大家好,我是一个假人.在学习O ...

  8. Codeforces Round #406 (Div. 2) D. Legacy 线段树建模+最短路

    D. Legacy time limit per test 2 seconds memory limit per test 256 megabytes input standard input out ...

  9. Codeforces Round #406 (Div. 2)滚粗记

    A 一看到题,不是一道解不定方程的裸题吗,调了好久exgcd. 其实一个for就好了啊 B 一直WA ON TEST 7真是烦,一想会不会是编号太大了,又写了一个map版本,无用. 调了好久好久才发现 ...

随机推荐

  1. 数据结构——线性表——队列(queue)

    队列也是一种特殊的线性表,它的特点是先入先出(FIFO,即first in first out).它的意思也很直观,想象一下排队买票,先排的人先买(插队是不对的,所以别去想).它也是很常用的数据结构, ...

  2. 2018c语言第1次作业

    6-1 计算两数的和与差 1.设计思路 (1)主要描述题目算法 第一步:把两个数的加减法分别赋给psum和pdiff. 第二步:通过psum和pdiff的地址把值传回主函数. (2)流程图.(无) 2 ...

  3. 源端控制的OpenFlow数据面

    OpenFlow 交换机一般采用 TCAM 存储和查找流表,从而带来了扩展性.成本和能耗的问题.TCAM 成本和能耗过高,存储容量有限,一般交换机中的 TCAM 仅能存储几千条流表项,对 OpenFl ...

  4. python 操作MongoDB

    安装MongoDB 启动数据库:安装完成指定数据库存放路径 mongod.exe --dbpath c:\data\db进入目录后运行mongo.exe 成功 创建数据库 > use mydb ...

  5. 不高兴的小名 nyoj

    不高兴的小明 时间限制:3000 ms  |  内存限制:65535 KB 难度:1   描述    小明又出问题了.妈妈认为聪明的小明应该更加用功学习而变的更加厉害,所以小明除了上学之外,还要参加妈 ...

  6. Mego(04) - Mego入门

    本教程演示创建一个简单的数据库访问及更新数据的示例以便于初步了解下Mego框架的使用. 文中使用Visual Studio 2017版本. 创建Visual Studio项目 创建一个名为 MegoS ...

  7. Python-Cpython解释器支持的进程与线程-Day9

    Cpython解释器支持的进程与线程 阅读目录 一 python并发编程之多进程 1.1 multiprocessing模块介绍 1.2 Process类的介绍 1.3 Process类的使用 1.4 ...

  8. 说说Java代理模式

    代理实现可以分为静态代理和动态代理. 静态代理 静态代理模式其实很常见,比如买火车票这件小事:黄牛相当于是火车站的代理,我们可以通过黄牛买票,但只能去火车站进行改签和退票.在代码实现中相当于为一个委托 ...

  9. 老男孩python学习之作业二---三级菜单

    因为之前花力气完成了购物小程序的作业 现在做这个三级菜单简直是so easy!! 1.显示省级菜单 2.交互,提示用户输入要查看的省份(退出e) 2.1.用户正确输入列表中的省份 3.显示市级菜单 3 ...

  10. Spark:将RDD[List[String,List[Person]]]中的List[Person]通过spark api保存为hdfs文件时一直出现not serializable task,没办法找到"spark自定义Kryo序列化输入输出API"

    声明:本文转自<在Spark中自定义Kryo序列化输入输出API>   在Spark中内置支持两种系列化格式:(1).Java serialization:(2).Kryo seriali ...