转 Caffe学习系列(2):数据层及参数
http://www.cnblogs.com/denny402/p/5070928.html
要运行caffe,需要先创建一个模型(model),如比较常用的Lenet,Alex等, 而一个模型由多个屋(layer)构成,每一屋又由许多参数组成。所有的参数都定义在caffe.proto这个文件中。要熟练使用caffe,最重要的就是学会配置文件(prototxt)的编写。
层有很多种类型,比如Data,Convolution,Pooling等,层之间的数据流动是以Blobs的方式进行。
今天我们就先介绍一下数据层.
数据层是每个模型的最底层,是模型的入口,不仅提供数据的输入,也提供数据从Blobs转换成别的格式进行保存输出。通常数据的预处理(如减去均值, 放大缩小, 裁剪和镜像等),也在这一层设置参数实现。
数据来源可以来自高效的数据库(如LevelDB和LMDB),也可以直接来自于内存。如果不是很注重效率的话,数据也可来自磁盘的hdf5文件和图片格式文件。
所有的数据层的都具有的公用参数:先看示例

layer {
name: "cifar"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mean_file: "examples/cifar10/mean.binaryproto"
}
data_param {
source: "examples/cifar10/cifar10_train_lmdb"
batch_size: 100
backend: LMDB
}
}

name: 表示该层的名称,可随意取
type: 层类型,如果是Data,表示数据来源于LevelDB或LMDB。根据数据的来源不同,数据层的类型也不同(后面会详细阐述)。一般在练习的时候,我们都是采 用的LevelDB或LMDB数据,因此层类型设置为Data。
top或bottom: 每一层用bottom来输入数据,用top来输出数据。如果只有top没有bottom,则此层只有输出,没有输入。反之亦然。如果有多个 top或多个bottom,表示有多个blobs数据的输入和输出。
data 与 label: 在数据层中,至少有一个命名为data的top。如果有第二个top,一般命名为label。 这种(data,label)配对是分类模型所必需的。
include: 一般训练的时候和测试的时候,模型的层是不一样的。该层(layer)是属于训练阶段的层,还是属于测试阶段的层,需要用include来指定。如果没有include参数,则表示该层既在训练模型中,又在测试模型中。
Transformations: 数据的预处理,可以将数据变换到定义的范围内。如设置scale为0.00390625,实际上就是1/255, 即将输入数据由0-255归一化到0-1之间
其它的数据预处理也在这个地方设置:

transform_param {
scale: 0.00390625
mean_file_size: "examples/cifar10/mean.binaryproto"
# 用一个配置文件来进行均值操作
mirror: 1 # 1表示开启镜像,0表示关闭,也可用ture和false来表示
# 剪裁一个 227*227的图块,在训练阶段随机剪裁,在测试阶段从中间裁剪
crop_size: 227
}

后面的data_param部分,就是根据数据的来源不同,来进行不同的设置。
1、数据来自于数据库(如LevelDB和LMDB)
层类型(layer type):Data
必须设置的参数:
source: 包含数据库的目录名称,如examples/mnist/mnist_train_lmdb
batch_size: 每次处理的数据个数,如64
可选的参数:
rand_skip: 在开始的时候,路过某个数据的输入。通常对异步的SGD很有用。
backend: 选择是采用LevelDB还是LMDB, 默认是LevelDB.
示例:

layer {
name: "mnist"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
scale: 0.00390625
}
data_param {
source: "examples/mnist/mnist_train_lmdb"
batch_size: 64
backend: LMDB
}
}

2、数据来自于内存
层类型:MemoryData
必须设置的参数:
batch_size:每一次处理的数据个数,比如2
channels:通道数
height:高度
width: 宽度
示例:

layer {
top: "data"
top: "label"
name: "memory_data"
type: "MemoryData"
memory_data_param{
batch_size: 2
height: 100
width: 100
channels: 1
}
transform_param {
scale: 0.0078125
mean_file: "mean.proto"
mirror: false
}
}

3、数据来自于HDF5
层类型:HDF5Data
必须设置的参数:
source: 读取的文件名称
batch_size: 每一次处理的数据个数
示例:

layer {
name: "data"
type: "HDF5Data"
top: "data"
top: "label"
hdf5_data_param {
source: "examples/hdf5_classification/data/train.txt"
batch_size: 10
}
}

4、数据来自于图片
层类型:ImageData
必须设置的参数:
source: 一个文本文件的名字,每一行给定一个图片文件的名称和标签(label)
batch_size: 每一次处理的数据个数,即图片数
可选参数:
rand_skip: 在开始的时候,路过某个数据的输入。通常对异步的SGD很有用。
shuffle: 随机打乱顺序,默认值为false
new_height,new_width: 如果设置,则将图片进行resize
示例:

layer {
name: "data"
type: "ImageData"
top: "data"
top: "label"
transform_param {
mirror: false
crop_size: 227
mean_file: "data/ilsvrc12/imagenet_mean.binaryproto"
}
image_data_param {
source: "examples/_temp/file_list.txt"
batch_size: 50
new_height: 256
new_width: 256
}
}

5、数据来源于Windows
层类型:WindowData
必须设置的参数:
source: 一个文本文件的名字
batch_size: 每一次处理的数据个数,即图片数
示例:

layer {
name: "data"
type: "WindowData"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mirror: true
crop_size: 227
mean_file: "data/ilsvrc12/imagenet_mean.binaryproto"
}
window_data_param {
source: "examples/finetune_pascal_detection/window_file_2007_trainval.txt"
batch_size: 128
fg_threshold: 0.5
bg_threshold: 0.5
fg_fraction: 0.25
context_pad: 16
crop_mode: "warp"
}
}

转 Caffe学习系列(2):数据层及参数的更多相关文章
- Caffe学习系列(3):视觉层(Vision Layers)及参数
所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ...
- Caffe学习系列(23):如何将别人训练好的model用到自己的数据上
caffe团队用imagenet图片进行训练,迭代30多万次,训练出来一个model.这个model将图片分为1000类,应该是目前为止最好的图片分类model了. 假设我现在有一些自己的图片想进行分 ...
- 转 Caffe学习系列(3):视觉层(Vision Layers)及参数
所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ...
- Caffe学习系列(12):训练和测试自己的图片
学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...
- 转 Caffe学习系列(12):训练和测试自己的图片
学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...
- Caffe 学习系列
学习列表: Google protocol buffer在windows下的编译 caffe windows 学习第一步:编译和安装(vs2012+win 64) caffe windows学习:第一 ...
- Caffe学习系列(12):训练和测试自己的图片--linux平台
Caffe学习系列(12):训练和测试自己的图片 学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测 ...
- Caffe学习系列(22):caffe图形化操作工具digits运行实例
上接:Caffe学习系列(21):caffe图形化操作工具digits的安装与运行 经过前面的操作,我们就把数据准备好了. 一.训练一个model 右击右边Models模块的” Images" ...
- Caffe学习系列(21):caffe图形化操作工具digits的安装与运行
经过前面一系列的学习,我们基本上学会了如何在linux下运行caffe程序,也学会了如何用python接口进行数据及参数的可视化. 如果还没有学会的,请自行细细阅读: caffe学习系列:http:/ ...
- Caffe学习系列——工具篇:神经网络模型结构可视化
Caffe学习系列——工具篇:神经网络模型结构可视化 在Caffe中,目前有两种可视化prototxt格式网络结构的方法: 使用Netscope在线可视化 使用Caffe提供的draw_net.py ...
随机推荐
- css中 padding属性的数值赋予顺序为
4种可能的情况,举例说明:padding:10px; 四个内边距都是10pxpadding:5px 10px; 上下5px 左右10pxpadding:5px 10px 15px; 上5px 右10p ...
- js—双等号引起的类型转换过程
一.首先看双等号前后有没有NaN,如果存在NaN一律返回false 二.再看双等号前后有没有布尔,有布尔就将布尔转换为数字.(false是0,true是1) 三.接着看双等号前后有没有字符串,有三种情 ...
- python脚本检查TCP端口是否正常
#!/usr/bin/python import socket import re import sys def check_server(address,port): s = socket.sock ...
- 康盛(discuz )牛逼的PHP加解密算法函数
1.前言 康盛的 authcode 函数很牛叉,是一个具有有效期的加解密函数,同一个字符每次加密所产生的结果都是不一致的,并且可以自定义设置过期时间. 设计原理:authcode 是使用异或运算进行加 ...
- java重定向
package com.sn.servlet; import java.io.IOException; import javax.servlet.ServletException; import ja ...
- dlib下训练自己的物体检测器--手的检测
之前我们在Linux上安装了dlib(http://www.cnblogs.com/take-fetter/p/8318602.html),也成功的完成了之前的人脸检测程序, 今天我们来一起学习怎样使 ...
- Spring mybatis源码学习指引目录
前言: 分析了很多方面的mybatis的源码以及与spring结合的源码,但是难免出现错综的现象,为了使源码陶冶更为有序化.清晰化,特作此随笔归纳下分析过的内容.博主也为mybatis官方提供过pul ...
- transform复习之图片的旋转木马效果
效果示意图 <!DOCTYPE><html><head><meta http-equiv="Content-Type" content=& ...
- 【转】JavaScript的三种消息框alert,confirm,prompt
1. alert是弹出警告框,在文本里面加入\n就可以换行.2. confirm弹出确认框,会返回布尔值,通过这个值可以判断点击时确认还是取消.true表示点击了确认,false表示点击了取消.3. ...
- asp.net core 中 sql server 2017 数据库连接测试
使用sql server 2017 进行连接: 配置appsettings.json文件 { "ConnectionStrings": { "DefaultConnect ...