3D面部重建是一个非常困难的基本计算机视觉问题。目前的系统通常假设多个面部图像(有时来自同一主题)作为输入的可用性,并且必须解决许多方法学挑战,例如在大的面部姿势,表情和不均匀照明之间建立密集的对应。一般来说,这些方法需要复杂和低效的管道来建模和拟合。在这项工作中,我们提出通过在由2D图像和3D面部模型或扫描组成的适当数据集上训练卷积神经网络(CNN)来解决许多这些限制。我们的CNN只使用一个2D面部图像,不需要精确的对准,也不会形成图像之间的密集对应,适用于任意面部姿势和表情,并可用于重建整个3D面部几何(包括不可见部分(在训练期间)和拟合(测试期间)3D变形模型。我们通过一个简单的CNN架构来实现这一点,该架构对单个2D图像的3D面部几何体的体积表示进行直接回归。我们还展示了如何将面部地标定位的相关任务纳入拟议的框架,并有助于提高重建质量,特别是对于大姿势和面部表情的情况。

3D face reconstruction is a fundamental Computer Vision problem of extraordinary difficulty. Current systems often assume the availability of multiple facial images (sometimes from the same subject) as input, and must address a number of methodological challenges such as establishing dense correspondences across large facial poses, expressions, and non-uniform illumination. In general these methods require complex and inefficient pipelines for model building and fitting. In this work, we propose to address many of these limitations by training a Convolutional Neural Network (CNN) on an appropriate dataset consisting of 2D images and 3D facial models or scans. Our CNN works with just a single 2D facial image, does not require accurate alignment nor establishes dense correspondence between images, works for arbitrary facial poses and expressions, and can be used to reconstruct the whole 3D facial geometry (including the non-visible parts of the face) bypassing the construction (during training) and fitting (during testing) of a 3D Morphable Model. We achieve this via a simple CNN architecture that performs direct regression of a volumetric representation of the 3D facial geometry from a single 2D image. We also demonstrate how the related task of facial landmark localization can be incorporated into the proposed framework and help improve reconstruction quality, especially for the cases of large poses and facial expressions.

项目地址:https://github.com/AaronJackson/vrn

更多人工智能教程:http://www.buluo360.com

vrn:基于直接体积回归的单幅图像大姿态三维人脸重建的更多相关文章

  1. 基于FPGA的线阵CCD图像测量系统研究——笔记

    本文是对基于FPGA的线阵CCD图像测量系统研究(作者:高尚)的阅读笔记 第一章绪论 1. 读读看 读了前面的摘要依然没有看懂作者要做什么.接着往下读....终于看到了一个字眼“基于机器视觉的图像测量 ...

  2. 基于CART的回归和分类任务

    CART 是 classification and regression tree 的缩写,即分类与回归树. 博主之前学习的时候有用过决策树来做预测的小例子:机器学习之决策树预测--泰坦尼克号乘客数据 ...

  3. 基于qml创建最简单的图像处理程序(3)-使用opencv&qml进行图像处理

    <基于qml创建最简单的图像处理程序>系列课程及配套代码基于qml创建最简单的图像处理程序(1)-基于qml创建界面http://www.cnblogs.com/jsxyhelu/p/83 ...

  4. 基于qml创建最简单的图像处理程序(2)-使用c++&qml进行图像处理

     <基于qml创建最简单的图像处理程序>系列课程及配套代码基于qml创建最简单的图像处理程序(1)-基于qml创建界面http://www.cnblogs.com/jsxyhelu/p/8 ...

  5. 基于qml创建最简单的图像处理程序(1)-基于qml创建界面

    <基于qml创建最简单的图像处理程序>系列课程及配套代码基于qml创建最简单的图像处理程序(1)-基于qml创建界面http://www.cnblogs.com/jsxyhelu/p/83 ...

  6. 基于均值坐标(Mean-Value Coordinates)的图像融合算法的优化实现

    目录 1. 概述 2. 实现 2.1. 原理 2.2. 核心代码 2.3. 第二种优化 3. 结果 1. 概述 我在之前的文章<基于均值坐标(Mean-Value Coordinates)的图像 ...

  7. Python图像处理丨基于OpenCV和像素处理的图像灰度化处理

    摘要:本篇文章讲解图像灰度化处理的知识,结合OpenCV调用cv2.cvtColor()函数实现图像灰度操作,使用像素处理方法对图像进行灰度化处理. 本文分享自华为云社区<[Python图像处理 ...

  8. 基于面绘制的MC算法以及基于体绘制的 Ray-casting 实现Dicom图像的三维重建(python实现)

    加入实验室后,经过张老师的介绍,有幸与某公司合共共同完成某个项目,在此项目中我主要负责的是三维 pdf 报告生成.Dicom图像上亮度.对比度调整以及 Dicom图像三维重建.今天主要介绍一下完成Di ...

  9. 基于均值坐标(Mean-Value Coordinates)的图像融合算法的具体实现

    目录 1. 概述 2. 实现 2.1. 准备 2.2. 核心 2.2.1. 均值坐标(Mean-Value Coordinates) 2.2.2. ROI边界栅格化 2.2.3. 核心实现 2.2.4 ...

随机推荐

  1. 关于TomCat上传文件中文名乱码的问题

    最近在学习TomCat文件上传这一部分,由于文件上传必须要三个条件: 1.表单提交方式必须为Post 2.表单中需要有<input type="file">元素,还需要 ...

  2. 使用C#开发Android应用之WebApp

    近段时间了解了一下VS2017开发安卓应用的一些技术,特地把C#开发WebApp的一些过程记录下来, 欢迎大家一起指教.讨论,废话少说,是时候开始表演真正的技术了.. 1.新建空白Android应用 ...

  3. Eclipse常用快捷键总结

    Eclipse常用快捷键总结 CTRL+C(复制).CTRL+X(剪切).CTRL+Z(撤销).CTRL+F(查找).CTRL+H(搜索文件或字符串).CTRL+Y(重做).CTRL+/(双斜杠注释) ...

  4. 记录Yii2代码调试中出现的两个问题(截图展示)

    1.代码会中断执行,不提示错误信息,是由于substr函数第一个参数为数组造成的 2. 谷歌浏览器调试异步调用接口时出现的错误,需在接口返回处进行断点调试 这两个错误比较隐蔽,调试代码时必须认真仔细

  5. 回收 PV - 每天5分钟玩转 Docker 容器技术(152)

    当 PV 不再需要时,可通过删除 PVC 回收. 当 PVC mypvc1 被删除后,我们发现 Kubernetes 启动了一个新 Pod recycler-for-mypv1,这个 Pod 的作用就 ...

  6. SpringCloud的Bus(一)消息中间件的概念和用途

    一.概念与定义 1.Message Broker Message Broker是一种消息验证.消息转换.消息路由的架构模式,用于如: 消息路由到一个或多个目的地 消息转化为其他的表现方式 执行消息的聚 ...

  7. 大数据学习总结(5)参考elk技术架构

  8. leetcode算法:Next Greater Element I

    You are given two arrays (without duplicates) nums1 and nums2 where nums1's elements are subset of n ...

  9. jacascript 判断元素尺寸和位置

    前言:这是笔者学习之后自己的理解与整理.如果有错误或者疑问的地方,请大家指正,我会持续更新! getBoundingClientRect() 判断一个元素的尺寸和位置是简单的方法就是使用 obj.ge ...

  10. equals方法的编写建议

    1.显示参数命名为 otherObject ,稍后需要将其转换成另一个叫做 other 的变量. 2.检测 this 与 otherObject 是否引用同一个对象: //这条语句只是一个优化.计算这 ...