You are playing the following Nim Game with your friend: There is a heap of stones on the table, each time one of you take turns to remove 1 to 3 stones. The one who removes the last stone will be the winner. You will take the first turn to remove the stones.

Both of you are very clever and have optimal strategies for the game. Write a function to determine whether you can win the game given the number of stones in the heap.

For example, if there are 4 stones in the heap, then you will never win the game: no matter 1, 2, or 3 stones you remove, the last stone will always be removed by your friend.

Hint:

  1. If there are 5 stones in the heap, could you figure out a way to remove the stones such that you will always be the winner?

Credits:
Special thanks to @jianchao.li.fighter for adding this problem and creating all test cases.

有史以来最少代码量的解法,虽然解法很简单,但是题目还是蛮有意思的,题目说给我们一堆石子,每次可以拿一个两个或三个,两个人轮流拿,拿到最后一个石子的人获胜,现在给我们一堆石子的个数,问我们能不能赢。那么我们就从最开始分析,由于是我们先拿,那么3个以内(包括3个)的石子,我们直接赢,如果共4个,那么我们一定输,因为不管我们取几个,下一个人一次都能取完。如果共5个,我们赢,因为我们可以取一个,然后变成4个让别人取,根据上面的分析我们赢,所以我们列出1到10个的情况如下:

1    Win

2    Win

3    Win

4    Lost

5    Win

6    Win

7    Win

8    Lost

9    Win

10   Win

由此我们可以发现规律,只要是4的倍数个,我们一定会输,所以对4取余即可,参见代码如下:

class Solution {
public:
bool canWinNim(int n) {
return n % ;
}
};

讨论:我们来generalize一下这道题,当可以拿1~n个石子时,那么个数为(n+1)的整数倍时一定会输,我们试着证明一下这个结论,若当前共有m*(n+1)个石子,那么:

当m=1时,即剩n+1个的时候,肯定会输,因为不管你取1~n中的任何一个数字,另一个人都可以取完。
当m>1时,即有m*(n+1)的时候,不管你先取1~n中的任何一个数字x,另外一个人一定会取n+1-x个,这样总数就变成了(m-1)*(n+1),第二个人就一直按这个策略取,那么直到剩n+1个的时候,就便变成m=1的情况,一定会输。

类似题目:

Flip Game II

参考资料:

https://leetcode.com/problems/nim-game/solution/

https://leetcode.com/problems/nim-game/discuss/73749/Theorem:-all-4s-shall-be-false

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Nim Game 尼姆游戏的更多相关文章

  1. 一次失败的刷题经历:[LeetCode]292之尼姆游戏(Nim Game)(转)

    最近闲来无事刷LeetCode,发现这道题的Accept Rate还是挺高的,尝试着做了一下,结果悲剧了,把过程写下来,希望能长点记性.该题的描述翻译成中文如下: 你正在和你的朋友玩尼姆游戏(Nim ...

  2. 一次失败的刷题经历:[LeetCode]292之尼姆游戏(Nim Game)

    最近闲来无事刷LeetCode,发现这道题的Accept Rate还是挺高的,尝试着做了一下,结果悲剧了,把过程写下来,希望能长点记性.该题的描述翻译成中文如下: 你正在和你的朋友玩尼姆游戏(Nim ...

  3. 山东省第八届省赛 A:Return of the Nim(尼姆+威佐夫)

    Problem Description Sherlock and Watson are playing the following modified version of Nim game: Ther ...

  4. Light OJ 1253 Misere Nim (尼姆博弈(2))

    LightOJ1253 :Misere Nim 时间限制:1000MS    内存限制:32768KByte   64位IO格式:%lld & %llu 描述 Alice and Bob ar ...

  5. ICG游戏:尼姆游戏异或解法的证明

    描述: 尼姆博奕(Nimm Game),有n堆石子,每堆石子有若干石子,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限.取走最后石子的人获胜. 标准解法: 判断: 先计算先手是必胜还是 ...

  6. POJ2975 Nim 博弈论 尼姆博弈

    http://poj.org/problem?id=2975 题目始终是ac的最大阻碍. 问只取一堆有多少方案可以使当前局面为先手必败. 显然由尼姆博弈的性质可以知道需要取石子使所有堆石子数异或和为0 ...

  7. leetCode之旅(5)-博弈论中极为经典的尼姆游戏

    题目介绍 You are playing the following Nim Game with your friend: There is a heap of stones on the table ...

  8. BZOJ1022[SHOI2008]小约翰的游戏——anti-SG(反尼姆博弈)

    题目描述 小约翰经常和他的哥哥玩一个非常有趣的游戏:桌子上有n堆石子,小约翰和他的哥哥轮流取石子,每个人取的时候,可以随意选择一堆石子,在这堆石子中取走任意多的石子,但不能一粒石子也不取,我们规定取到 ...

  9. Nim游戏(尼姆博弈)

    这里是尼姆博弈的模板,前面的博弈问题的博客里也有,这里单列出来. 有N堆石子.A B两个人轮流拿,A先拿.每次只能从一堆中取若干个,可将一堆全取走,但不可不取,拿到最后1颗石子的人获胜.假设A B都非 ...

随机推荐

  1. Vertica集群扩容实验过程记录

    需求: 将3个节点的Vertica集群扩容,额外增加3个节点,即扩展到6个节点的Vertica集群. 实验环境: RHEL 6.5 + Vertica 7.2.2-2 步骤: 1.三节点Vertica ...

  2. 前端精选文摘:BFC 神奇背后的原理

    BFC 已经是一个耳听熟闻的词语了,网上有许多关于 BFC 的文章,介绍了如何触发 BFC 以及 BFC 的一些用处(如清浮动,防止 margin 重叠等).虽然我知道如何利用 BFC 解决这些问题, ...

  3. 跨域之同源策略 Same-origin policy

    同源策略是浏览器中最基本的隔离潜在恶意文件的安全策略,他限制了来自不同源(origin)的文档或脚本之间的相互作用. 何谓同源 在跨域之URL中介绍过一个URL的标准格式如下: 协议类型://服务器地 ...

  4. PHP之提取多维数组指定列的方法

    前言:有时候在开发中会遇到这样的问题,我们需要把有规律的多维数组按照纵向(列)取出,有下面的方法可用: 我们将拿下面的数组来处理: $arr = array( '0' => array('id' ...

  5. JavaScript : 零基础打造自己的类库

    写作不易,转载请注明出处,谢谢. 文章类别:Javascript基础(面向初学者) 前言 在之前的章节中,我们已经不依赖jQuery,单纯地用JavaScript封装了很多方法,这个时候,你一定会想, ...

  6. 编写高质量代码:改善Java程序的151个建议(第3章:类、对象及方法___建议47~51)

    建议47:在equals中使用getClass进行类型判断 本节我们继续讨论覆写equals的问题,这次我们编写一个员工Employee类继承Person类,这很正常,员工也是人嘛,而且在JavaBe ...

  7. Entity Framework 教程——模型浏览器

    模型浏览器: 在之前的章节中,我们创建了第一个关于学校的实体数据模型.但是EDM设计器并没有将他所创建的所有对象完全显示出来.它只将数据库中的被选择的表与视图显示出来了. 模型浏览器可以将EDM所创建 ...

  8. C++ 最小化到托盘

    #define WM_SHOWTASK (WM_USER + 1) void CTestDlg::OnSysCommand(UINT nID, LPARAM lParam) { if ((nID &a ...

  9. 解决VS调试时断点不会命中

    断点调试是VS中的一大利器,有了它我们可以快速定位到代码的问题所在.在某些情况下会导致设置了断点后程序无法在断点处停下,下面分4种情况来解决断点不会命中的问题 百度经验:jingyan.baidu.c ...

  10. GET command找不到

    谷歌的: On running a cronjob with get command, I was getting the following error. /bin/sh: GET: command ...