[LeetCode] Nim Game 尼姆游戏
You are playing the following Nim Game with your friend: There is a heap of stones on the table, each time one of you take turns to remove 1 to 3 stones. The one who removes the last stone will be the winner. You will take the first turn to remove the stones.
Both of you are very clever and have optimal strategies for the game. Write a function to determine whether you can win the game given the number of stones in the heap.
For example, if there are 4 stones in the heap, then you will never win the game: no matter 1, 2, or 3 stones you remove, the last stone will always be removed by your friend.
Hint:
- If there are 5 stones in the heap, could you figure out a way to remove the stones such that you will always be the winner?
Credits:
Special thanks to @jianchao.li.fighter for adding this problem and creating all test cases.
有史以来最少代码量的解法,虽然解法很简单,但是题目还是蛮有意思的,题目说给我们一堆石子,每次可以拿一个两个或三个,两个人轮流拿,拿到最后一个石子的人获胜,现在给我们一堆石子的个数,问我们能不能赢。那么我们就从最开始分析,由于是我们先拿,那么3个以内(包括3个)的石子,我们直接赢,如果共4个,那么我们一定输,因为不管我们取几个,下一个人一次都能取完。如果共5个,我们赢,因为我们可以取一个,然后变成4个让别人取,根据上面的分析我们赢,所以我们列出1到10个的情况如下:
1 Win
2 Win
3 Win
4 Lost
5 Win
6 Win
7 Win
8 Lost
9 Win
10 Win
由此我们可以发现规律,只要是4的倍数个,我们一定会输,所以对4取余即可,参见代码如下:
class Solution {
public:
bool canWinNim(int n) {
return n % ;
}
};
讨论:我们来generalize一下这道题,当可以拿1~n个石子时,那么个数为(n+1)的整数倍时一定会输,我们试着证明一下这个结论,若当前共有m*(n+1)个石子,那么:
类似题目:
参考资料:
https://leetcode.com/problems/nim-game/solution/
https://leetcode.com/problems/nim-game/discuss/73749/Theorem:-all-4s-shall-be-false
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] Nim Game 尼姆游戏的更多相关文章
- 一次失败的刷题经历:[LeetCode]292之尼姆游戏(Nim Game)(转)
最近闲来无事刷LeetCode,发现这道题的Accept Rate还是挺高的,尝试着做了一下,结果悲剧了,把过程写下来,希望能长点记性.该题的描述翻译成中文如下: 你正在和你的朋友玩尼姆游戏(Nim ...
- 一次失败的刷题经历:[LeetCode]292之尼姆游戏(Nim Game)
最近闲来无事刷LeetCode,发现这道题的Accept Rate还是挺高的,尝试着做了一下,结果悲剧了,把过程写下来,希望能长点记性.该题的描述翻译成中文如下: 你正在和你的朋友玩尼姆游戏(Nim ...
- 山东省第八届省赛 A:Return of the Nim(尼姆+威佐夫)
Problem Description Sherlock and Watson are playing the following modified version of Nim game: Ther ...
- Light OJ 1253 Misere Nim (尼姆博弈(2))
LightOJ1253 :Misere Nim 时间限制:1000MS 内存限制:32768KByte 64位IO格式:%lld & %llu 描述 Alice and Bob ar ...
- ICG游戏:尼姆游戏异或解法的证明
描述: 尼姆博奕(Nimm Game),有n堆石子,每堆石子有若干石子,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限.取走最后石子的人获胜. 标准解法: 判断: 先计算先手是必胜还是 ...
- POJ2975 Nim 博弈论 尼姆博弈
http://poj.org/problem?id=2975 题目始终是ac的最大阻碍. 问只取一堆有多少方案可以使当前局面为先手必败. 显然由尼姆博弈的性质可以知道需要取石子使所有堆石子数异或和为0 ...
- leetCode之旅(5)-博弈论中极为经典的尼姆游戏
题目介绍 You are playing the following Nim Game with your friend: There is a heap of stones on the table ...
- BZOJ1022[SHOI2008]小约翰的游戏——anti-SG(反尼姆博弈)
题目描述 小约翰经常和他的哥哥玩一个非常有趣的游戏:桌子上有n堆石子,小约翰和他的哥哥轮流取石子,每个人取的时候,可以随意选择一堆石子,在这堆石子中取走任意多的石子,但不能一粒石子也不取,我们规定取到 ...
- Nim游戏(尼姆博弈)
这里是尼姆博弈的模板,前面的博弈问题的博客里也有,这里单列出来. 有N堆石子.A B两个人轮流拿,A先拿.每次只能从一堆中取若干个,可将一堆全取走,但不可不取,拿到最后1颗石子的人获胜.假设A B都非 ...
随机推荐
- [转] 给ubuntu中的软件设置desktop快捷方式(以android studio为例)
原文链接:http://www.cnblogs.com/kinyoung/p/4493472.html ubuntu的快捷方式都在/usr/share/applications/路径下有很多*.des ...
- IntelliJ IDEA 内存优化最佳实践
本文作者在和同事的一次讨论中发现,对 IntelliJ IDEA 内存采用不同的设置方案,会对 IDE 的速度和响应能力产生不同的影响. Don't be a Scrooge and give you ...
- 由css reset想到的深入理解margin及em的含义
由css reset想到的深入理解margin及em的含义 原文地址:http://www.ymblog.net/content_189.html 经常看到这样语句,*{ margin:0px;pad ...
- Java进击C#——语法之多线程
本章简言 上一章中笔者对C#一些独有的语法点进行讲解,相信也可以看C#的一些神奇之处.那么本章主要是放在多线程这方面的知识.不管是C#还是JAVA在开发过程或多或少都会用到关于多线程的编程.当然笔者不 ...
- MVC 传值
1.ViewBag Controller:ViewBag.Message = "Hello, Word"; View:@ViewBag.Message 注:View ...
- Java transient关键字
Volatile修饰的成员变量在每次被线程访问时,都强迫从主内存中重读该成员变量的值.而且,当成员变量发生变化时,强迫线程将变化值回写到主内存.这样在任何时刻,两个不同的线程总是看到某个成员变量的同一 ...
- 深入理解DOM节点关系
× 目录 [1]父级属性 [2]子级属性 [3]同级属性[4]包含方法[5]关系方法 前面的话 DOM可以将任何HTML描绘成一个由多层节点构成的结构.节点分为12种不同类型,每种类型分别表示文档中不 ...
- iOS获取app图标和启动图片名字(AppIcon and LaunchImage's name)
在某种场景下,可能我们需要获取app的图标名称和启动图片的名称.比如说app在前台时,收到了远程通知但是通知栏是不会有通知提醒的,这时我想做个模拟通知提示,需要用到icon名称:再比如在加载某个控制器 ...
- c#进阶之神奇的CSharp
CSharp 简写为c#,是一门非常年轻而又有活力的语言. CSharp的诞生 在2000年6月微软发布了c#这门新的语言.作为微软公司.NET 平台的主角,c#吸收了在他之前诞生的语言(c ...
- iOS 性能调试
性能调优的方式: 1.通过专门的性能调优工具 2.通过代码优化 1. 性能调优工具: 下面针对iOS的性能调优工具进行一个介绍: 1.1 静态分析工具–Analyze 相信iOS开发者在App进行Bu ...