题目大意:

定义一个串:只含有 '( )','[ ]','{ }',3种(6个)字符。

定义 SS 串:

  1. 空串是SS表达式。
  2. 若A是SS表达式,且A串中不含有中括号和大括号,则(A)是SS表达式。
  3. 若A是SS表达式,且A串中不含有大括号,则[A]是SS表达式。
  4. 若A是SS表达式,则{A}是SS表达式。

    定义SS串深度:
  5. 空串深度为0.
  6. 若A可以写成*A'*,其中A‘为SS串,*为任意括号,则\(D(A)=D(A’)+1\)。
  7. 若A可以写成BC的形式,其中B、C均是SS串,则\(D(A)=max\{D(B),D(C) \}\)。

    求由l1个对括号,l2对中括号,l3对大括号,深度为d 构成的SS串的个数。

题解:这是一道字符串上的计数类 dp 问题,一般对于字符串计数类问题都先把字符串划分成若干个独立的部分,即:划分子问题,再进行求解。首先是状态的选择,\(dp[d][i][j][k]\) 表示深度不超过 d,且由 i,j,k 个对应括号构成的SS串的个数,之所以选择深度不超过 d,是因为若选择深度恰好为 d,将很难从子状态转移到当前状态,或者说,要考虑的情况也比较多。转移到状态转移如下:



在看题解时,看到了另一种比较优秀的解释:对于每一个括号序列可以看成是一棵树的 dfs 序列(类似 dfs 序),树的最大深度是 d,求计数。

记忆化搜搜版代码如下

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <memory.h>
using namespace std;
const int mod=11380; int dp[31][11][11][11],l1,l2,l3,d; int dfs(int dep,int x,int y,int z){
int &ans=dp[dep][x][y][z];
if(dep<0)return 0;
if(!dep){
if(x+y+z==0)return 1;
else return 0;
}
if(x+y+z==0)return 1;
if(ans>=0)return ans;
int cnt=0;
for(int i=0;i<x;i++)
for(int j=0;j<=y;j++)
for(int k=0;k<=z;k++)
cnt=(cnt+(long long)dfs(dep-1,i,j,k)*dfs(dep,x-1-i,y-j,z-k))%mod;
for(int j=0;j<y;j++)
for(int k=0;k<=z;k++)
cnt=(cnt+(long long)dfs(dep-1,0,j,k)*dfs(dep,x,y-1-j,z-k))%mod;
for(int k=0;k<z;k++)cnt=(cnt+(long long)dfs(dep-1,0,0,k)*dfs(dep,x,y,z-1-k))%mod;
return ans=cnt;
} int main(){
scanf("%d%d%d%d",&l1,&l2,&l3,&d);
memset(dp,-1,sizeof(dp));
printf("%d\n",(dfs(d,l1,l2,l3)-dfs(d-1,l1,l2,l3)+mod)%mod);
return 0;
}

迭代版代码如下

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; const int P = 11380;
const int M = 35;
const int N = 15;
int f[N][N][N][M]; int fun(int a, int b, int c, int d) {
if (a + b + c == 0) return 1;
int tmp = 0;
for (int i = 0; i < c; i++)
tmp = (tmp + f[a][b][c - i - 1][d] * f[0][0][i][d - 1]) % P;
for (int i = 0; i < b; i++)
for (int j = 0; j <= c; j++)
tmp = (tmp + f[a][b - i - 1][c - j][d] * f[0][i][j][d - 1]) % P;
for (int i = 0; i < a; i++)
for (int j = 0; j <= b; j++)
for (int k = 0; k <= c; k++)
tmp = (tmp + f[a - i - 1][b - j][c - k][d] * f[i][j][k][d - 1]) % P;
return tmp;
} int main() {
int l1, l2, l3, d;
cin >> l1 >> l2 >> l3 >> d;
f[0][0][0][0] = 1;
for (int i = 0; i <= l1; i++)
for (int j = 0; j <= l2; j++)
for (int k = 0; k <= l3; k++)
for (int l = 1; l <= d; l++)
f[i][j][k][l] = fun(i, j, k, l);
if (d) f[l1][l2][l3][d] = (f[l1][l2][l3][d] - f[l1][l2][l3][d - 1] + P) % P;
cout << f[l1][l2][l3][d] << endl;
return 0;
}

【POJ1187】陨石的秘密的更多相关文章

  1. [POJ1187] 陨石的秘密

    问题描述 公元11380年,一颗巨大的陨石坠落在南极.于是,灾难降临了,地球上出现了一系列反常的现象.当人们焦急万分的时候,一支中国科学家组成的南极考察队赶到了出事地点.经过一番侦察,科学家们发现陨石 ...

  2. Genotype&&陨石的秘密

    Genotype: Genotype 是一个有限的基因序列.它是由大写的英文字母A-Z组成,不同的字母表示不同种类的基因.一个基因可以分化成为一对新的基因.这种分化被一个定义的规则集合所控制.每个分化 ...

  3. 题解 【POJ1187】 陨石的秘密

    解析 考虑到数据范围,其实我们可以用记搜. 设\(f[a][b][c][d]\)表示还剩\(a\)个'{}',\(b\)个"[]",\(c\)个"()",深度\ ...

  4. poj[1187][Noi 01]陨石的秘密

    Description 公元11380年,一颗巨大的陨石坠落在南极.于是,灾难降临了,地球上出现了一系列反常的现象.当人们焦急万分的时候,一支中国科学家组成的南极考察队赶到了出事地点.经过一番侦察,科 ...

  5. POJ 1187 陨石的秘密 (线性DP)

    题意: 公元11380年,一颗巨大的陨石坠落在南极.于是,灾难降临了,地球上出现了一系列反常的现象.当人们焦急万分的时候,一支中国科学家组成的南极考察队赶到了出事地点.经过一番侦察,科学家们发现陨石上 ...

  6. AcWing 317. 陨石的秘密

    1 -> {} 2 -> [] 3 -> () \(f[d][a][b][c]\) 表示 \([i * 2 - 1, j * 2]\) 这段区间 深度为 d \(1\) 有 \(a\ ...

  7. 常规DP专题练习

    POJ2279 Mr. Young's Picture Permutations 题意 Language:Default Mr. Young's Picture Permutations Time L ...

  8. 别人整理的DP大全(转)

    动态规划 动态规划 容易: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ...

  9. dp题目列表

    此文转载别人,希望自己能够做完这些题目! 1.POJ动态规划题目列表 容易:1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 11 ...

随机推荐

  1. B. Divisor Subtraction

    链接 [http://codeforces.com/contest/1076/problem/B] 题意 给你一个小于1e10的n,进行下面的运算,n==0 结束,否则n-最小质因子,问你进行多少步 ...

  2. M1m2分析报告

    个人博客链接: http://www.cnblogs.com/kjzxzzh/p/4074386.html http://www.cnblogs.com/kjzxzzh/p/4027699.html ...

  3. linux第三次读书笔记

    第七章:链接 一.编译器驱动程序 编译系统提供的调用预处理器.编译器.汇编器和链接器来构造目标文件的程序. 二.静态链接 三.目标文件 三种形式: 1.可重定位目标文件: 2.可执行目标文件: 3.共 ...

  4. 选择J2EE的SSH框架的理由

    选择J2EE的SSH框架的理由 Struts2框架: Struts2框架的基本思想是采用MVC设计模式,即将应用设计成模型(Model).视图(View)和控制器(Control)三个部分:控制部分由 ...

  5. 使用Java+Kotlin双语言的LeetCode刷题之路(二)

    BasedLeetCode LeetCode learning records based on Java,Kotlin,Python...Github 地址 序号对应 LeetCode 中题目序号 ...

  6. PAT 1066 图像过滤

    https://pintia.cn/problem-sets/994805260223102976/problems/994805266514558976 图像过滤是把图像中不重要的像素都染成背景色, ...

  7. Java的Spring内实现的mini版内存"计数器"功能

    工期紧急,不让用Redis,自己实现了一个Spring内的mini版内存"计数器"功能,很简陋,和业务耦合太紧密,需要改进. public Long getCreationCoun ...

  8. Windows Server 2008 双网卡 断网问题 总结

    实施现场的情况,一个网卡接得是聚合APN的子网,一个网卡是借得局域网. 运行一份数据收发程序,从APN网接入数据,发送给局域网,程序启动一会儿后就崩溃,此时测试网卡就Ping网关了,或者是时断时续,逐 ...

  9. cxGrid导出Excel货币符号问题

    cxGrid导出到Excel,对于Currency类型总是加上了货币符号,可以修改导出文件设置来去掉: 在cxXLSExport.pas文件中,修改: procedure TcxXLSExportPr ...

  10. SAP字体调节大小

    登陆SAP 之后,菜单下面一行,最右边的那个彩色按钮(SAP GUI),点击“选项”-可视设计-字体设计-固定狂赌字体设计,点击:选择字体 即可.