哦天哪这个萨比提又浪费了我好几个小时。

我们在check的时候只考虑严格相交就行了,想了很久才注意到这一点。

然后就建图跑最短路,over。

 #include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <cstring>
#include <iomanip>
#include <iostream>
typedef double db;
using namespace std;
const db eps=1e-;
const db pi=acos(-);
int sign(db k){
if (k>eps) return ; else if (k<-eps) return -; return ;
}
int cmp(db k1,db k2){return sign(k1-k2);}
struct point{
db x,y;
point operator + (const point &k1) const{return (point){k1.x+x,k1.y+y};}
point operator - (const point &k1) const{return (point){x-k1.x,y-k1.y};}
point operator * (db k1) const{return (point){x*k1,y*k1};}
point operator / (db k1) const{return (point){x/k1,y/k1};}
db abs(){ return sqrt(x*x+y*y);}
db dis(point k1){ return(*this-k1).abs();}
};
db cross(point k1,point k2){ return k1.x*k2.y-k1.y*k2.x; }
db dot(point k1,point k2){ return k1.x*k2.x+k1.y*k2.y;}
int intersect(db l1,db r1,db l2,db r2){
if (l1>r1) swap(l1,r1); if (l2>r2) swap(l2,r2); return cmp(r1,l2)!=-&&cmp(r2,l1)!=-;
}
int checkSS(point k1,point k2,point k3,point k4){
return //intersect(k1.x,k2.x,k3.x,k4.x)&&intersect(k1.y,k2.y,k3.y,k4.y)&&
sign(cross(k3-k1,k4-k1))*sign(cross(k3-k2,k4-k2))<&&
sign(cross(k1-k3,k2-k3))*sign(cross(k1-k4,k2-k4))<;
}
struct line{
point p[];
};
int checkSS(line a,line b){
return checkSS(a.p[],a.p[],b.p[],b.p[]);
}
int n;
db dis[];
struct node { //堆节点
int u;db d;
bool operator <(const node& rhs) const {
return d>rhs.d;
}
};
struct Edge { int v,nxt;db w;};
Edge e[];
int head[],cnt=;
void addEdge(int u,int v,db w) {
e[++cnt].v=v;
e[cnt].w=w;
e[cnt].nxt=head[u];
head[u]=cnt;
}
void Dijkstra() {
for (int i=;i<=;i++) dis[i]=;
dis[]=;
priority_queue<node> Q; //堆
Q.push((node){,});
while (!Q.empty()) {
node fr=Q.top(); Q.pop();
int u=fr.u;db d=fr.d;
if (cmp(d,dis[u])>) continue;
for (int i=head[u];i;i=e[i].nxt) {
int v=e[i].v;db w=e[i].w;
if (cmp(dis[u]+w,dis[v])<) {
dis[v]=dis[u]+w;
Q.push((node){v,dis[v]});
}
}
}
}
db yl,y2,y3,y4,x;
vector<line> v;
vector<point> g;
bool check(line tmp){
for(int i=;i<v.size();i++){
if(checkSS(tmp,v[i])){
return false;
}//return false;
}
return true;
}
int main(){
ios::sync_with_stdio(false);
cout<<fixed<<setprecision();
while (cin>>n&&n!=-){
g.push_back(point{,});
for(int i=;i<=n;i++){
cin>>x>>yl>>y2>>y3>>y4;
g.push_back(point{x,yl});
g.push_back(point{x,y2});
g.push_back(point{x,y3});
g.push_back(point{x,y4});
v.push_back(line{point{x,},point{x,yl}});
v.push_back(line{point{x,y2},point{x,y3}});
v.push_back(line{point{x,y4},point{x,}});
}
g.push_back(point{,});
int m=g.size();
for(int i=;i<m;i++){
for(int j=i+;j<m;j++){
if(check(line{g[i],g[j]})){
//printf("%d %d\n",i,j);
addEdge(i,j,g[i].dis(g[j]));
addEdge(j,i,g[i].dis(g[j]));
}
}
}
Dijkstra();
cout<<dis[m-]<<endl;
g.clear();
v.clear();
cnt=;
memset(head,, sizeof(head));
}
}
/**
2
4 2 7 8 9
7 3 4.5 6 7
-1
*/

poj 1556的更多相关文章

  1. 最短路+线段交 POJ 1556 好题

    // 最短路+线段交 POJ 1556 好题 // 题意:从(0,5)到(10,5)的最短距离,中间有n堵墙,每堵上有两扇门可以通过 // 思路:先存图.直接n^2来暴力,不好写.分成三部分,起点 终 ...

  2. POJ 1556 - The Doors 线段相交不含端点

    POJ 1556 - The Doors题意:    在 10x10 的空间里有很多垂直的墙,不能穿墙,问你从(0,5) 到 (10,5)的最短距离是多少.    分析:        要么直达,要么 ...

  3. POJ 1556 The Doors 线段交 dijkstra

    LINK 题意:在$10*10$的几何平面内,给出n条垂直x轴的线,且在线上开了两个口,起点为$(0, 5)$,终点为$(10, 5)$,问起点到终点不与其他线段相交的情况下的最小距离. 思路:将每个 ...

  4. poj 1556 (Dijkstra + Geometry 线段相交)

    链接:http://poj.org/problem?id=1556 The Doors Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

  5. poj 1556 The door

    题目链接:http://poj.org/problem?id=1556 #include<cstdio> #include<cstring> #include<cmath ...

  6. poj 1556 zoj1721 BellmanFord 最短路+推断直线相交

    http://poj.org/problem?id=1556 The Doors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions ...

  7. POJ 1556 - The Doors - [平面几何+建图spfa最短路]

    题目链接:http://poj.org/problem?id=1556 Time Limit: 1000MS Memory Limit: 10000K Description You are to f ...

  8. POJ 1556 The Doors【最短路+线段相交】

    思路:暴力判断每个点连成的线段是否被墙挡住,构建图.求最短路. 思路很简单,但是实现比较复杂,模版一定要可靠. #include<stdio.h> #include<string.h ...

  9. 【POJ 1556】The Doors 判断线段相交+SPFA

    黑书上的一道例题:如果走最短路则会碰到点,除非中间没有障碍. 这样把能一步走到的点两两连边,然后跑SPFA即可. #include<cmath> #include<cstdio> ...

  10. poj 1556 The Doors

    The Doors Time Limit: 1000 MS Memory Limit: 10000 KB 64-bit integer IO format: %I64d , %I64u   Java ...

随机推荐

  1. C# Activator

    需要动态的创建一个实例模型的时候,就用Activator.CreateInstance(Type type);如果是明确的知道要创建哪个实例的模型,就可以用 new C#在类工厂中动态创建类的实例,所 ...

  2. iOS:检测多媒体(相机、相册、麦克风)设备权限,弹框提示

    一.感言 新年伊始,万象更新,一转眼,就2019年了. 作为一个科班生,从事移动端开发好几年了,回顾曾经的摸爬滚打,兢兢业业,严格的来说,多少算是入行了. 过去成绩如何暂且不说,新的一年,我当加倍努力 ...

  3. 如何确定Isilon cluster的网卡类型是40GbE的还是10GbE的

    可以使用isi upgrade cluster firmware devices命令. 从命令行输出可以看到,当前的cluster使用的是40G的前端网卡. 如果是10G网卡,输出结果应当是如下的样子 ...

  4. zookeeper 实现分布式锁安全用法

    zookeeper 实现分布式锁安全用法 标签: zookeeper sessionExpire connectionLoss 分布式锁 背景 ConnectionLoss 链接丢失 SessionE ...

  5. Structured Exception Handling

    https://docs.microsoft.com/en-us/windows/desktop/Debug/structured-exception-handling An exception is ...

  6. jvm理论-字节码指令

    Java虚拟机的指令由一个字节长度的.代表着某种特定操作含义的数字(称为操作码,Opcode)以及跟随其后的零至多个代表此操作所需参数(称为操作数,Operands)而构成. 基本数据类型 1.除了l ...

  7. 【ASP.NET Core】EF Core 模型与数据库的创建

    大家好,欢迎收看由土星卫视直播的大型综艺节目——老周吹逼逼. 今天咱们吹一下 EF Core 有关的话题.先说说模型和数据库是怎么建起来的,说装逼一点,就是我们常说的 “code first”.就是你 ...

  8. 尝试新的构造系统 Ninja

    Ninja 是 Chrome 项目的构建工具,用来替换经典工具 make,目前这个开源工具已经被很多其它项目采用.据项目作者描述,创建这个新的构建工具,主要是为了提升大型项目的编译速度. 由于 Nin ...

  9. 【PMP】项目管理ITTO概述

    1.项目整合管理

  10. R文本挖掘之jiebaR包

    library(jiebaRD)library(jiebaR)  ##调入分词的库cutter <- worker()mydata =read.csv(file.choose(),fileEnc ...