Moving Tables---(贪心)
|
Problem Description
The famous ACM (Advanced Computer Maker) Company has rented a floor of a building whose shape is in the following figure.
|
|
Input
The input consists of T test cases. The number of test cases ) (T is given in the first line of the input. Each test case begins with a line containing an integer N , 1<=N<=200 , that represents the number of tables to move. Each of the following N lines contains two positive integers s and t, representing that a table is to move from room number s to room number t (each room number appears at most once in the N lines). From the N+3-rd line, the remaining test cases are listed in the same manner as above.
|
|
Output
The output should contain the minimum time in minutes to complete the moving, one per line.
|
|
Sample Input
3 |
|
Sample Output
10 |
|
Source
Asia 2001, Taejon (South Korea)
|
题意:一条走廊,现在要移动桌子,从a房间移动到b房间,有交叉的地方不能同时移,即走廊的宽度只能容纳一个桌子。
分析:首先将左右的房间进行压缩,如1-2,压缩成1,即相对的房间变成了一个房间。然后一条一条的扫,经过的房间就加上1.最后求出经过房间的最大次数。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define INF 0x3f3f3f3f
const int maxn = +;
int corridor[maxn];
int T;
int ans=-INF; int main(){
// freopen("input.txt","r",stdin);
// freopen("output.txt","w",stdout);
cin>>T;
while(T--){
memset(corridor,,sizeof(corridor));
int n;
int s,t;
cin>>n;
for( int i=; i<n; i++ ){
cin>>s>>t;
if(s>t) swap(s,t);
s=(s+)/;
t=(t+)/;
for( int j=s; j<=t; j++ ){
corridor[j]++;
}
}
ans=-INF;
for(int i=; i<=; i++ ){
ans=max(ans,corridor[i]);
}
cout<<ans*<<endl;
}
return ;
}
Moving Tables---(贪心)的更多相关文章
- Moving Tables(贪心或Dp POJ1083)
Moving Tables Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 28304 Accepted: 9446 De ...
- zstu.2512. Moving Tables(贪心)
Moving Tables Time Limit: 1 Sec Memory Limit: 64 MB Submit: 1182 Solved: 563 Description The famo ...
- HDU1050(Moving Tables:贪心算法)
解题思路: 这种做法是基于hdu2037的做法上考虑的,找出所有可以同时搬运的桌子,然后就很方便求出最短总时间. 还有一种更简单的做法是直接遍历一遍找出与别的重复次数最多的那片区域,重复次数*10就可 ...
- hdu_1050 Moving Tables 贪心
Moving Tables Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
- UVAlive 2326 Moving Tables(贪心 + 区间问题)
The famous ACM (Advanced Computer Maker) Company has rented a floor of a building whose shape is in ...
- --hdu 1050 Moving Tables(贪心)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1050 AC code: #include<stdio.h> #include<str ...
- POJ 1083 && HDU 1050 Moving Tables (贪心)
Moving Tables Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...
- hdoj 1050 Moving Tables【贪心区间覆盖】
Moving Tables Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
- HDOJ 1050 Moving Tables
Moving Tables Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
- Moving Tables
Moving Tables Time Limit : 2000/1000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other) Total ...
随机推荐
- 使用python实现深度神经网络 4(转)
https://blog.csdn.net/oxuzhenyi/article/details/73026807 使用浅层神经网络识别图片中的英文字母 一.实验介绍 1.1 实验内容 本次实验我们正式 ...
- Linear SVM和LR的区别和联系
首先,SVM和LR(Logistic Regression)都是分类算法.SVM通常有4个核函数,其中一个是线性核,当使用线性核时,SVM就是Linear SVM,其实就是一个线性分类器,而LR也是一 ...
- 【Docker江湖】之docker部署与理解
转载请注明出处:http://blog.csdn.net/gamer_gyt 博主微博:http://weibo.com/234654758 Github:https://github.com/thi ...
- Python-MacOSX下SIP引起的pip权限问题解决方案(非取消SIP机制)
网上很多资料都是取消SIP机制,安装完再恢复.可是基于用户的权限来安装模块包显得更加合理. 第一种:(推荐)pip install module --user -U http://www.jiansh ...
- 【C++】C++中的函数
目录结构: contents structure [-] 简介 可变形参的函数 initializer_list形参 省略符形参 main函数处理命令行选项 函数指针与函数引用 inline内联函数 ...
- 安装Docker,Asp.net core
升级项目到.NET Core 2.0,在Linux上安装Docker,并成功部署 Docker从入门到实践 一.安装Docker a).设置Docker仓库 1.按惯例,首先更新Ubuntu的包索引 ...
- Servlet中的request对象、重定向和转发的差别(6)
1.这里所说的request对象指的是HttpServletRequest对象,它代表client的请求,当client通过HTTP协议訪问server时.HTTP请求头中的全部信息都封装在这个对象中 ...
- Python PhantomJS 爬虫 示例
from selenium import webdriver# 请求url url = "https://auctions.freemansauction.com/auction-lot-d ...
- 国外优秀C/C++网站
1.https://en.cppreference.com/w/ 2.https://www.geeksforgeeks.org/ 3.https://www.tutorialspoint.com/c ...
- tensorflow 笔记14:tf.expand_dims和tf.squeeze函数
tf.expand_dims和tf.squeeze函数 一.tf.expand_dims() Function tf.expand_dims(input, axis=None, name=None, ...