题目链接


\(Description\)

给定一个长为\(n\)的足迹序列(只包含\(L,R\)两种字符),你需要\(LRLRLR...\)这样交替在\(L\)和\(R\)上走(第一步可以选择\(L\)也可以选\(R\))。当你在\(L\)时,下一步可以走到任意一个没走过的\(R\);在\(R\)时,下一步可以走到任意一个没走过的\(L\)。求走完这个\(L,R\)序列最少需要往回走几次,并输出方案(往回走是指从位置\(i\)走到位置\(j\),\(j\lt i\))。保证存在一组可行方案。

\(n\leq10^5\)。

\(Solution\)

首先\(L,R\)数量差大于\(1\)无解。

如果我们需要往回走\(k\)次,那么我们可以将序列分成\(k+1\)个分别合法的子序列。

反过来,如果我们能将序列分成\(k\)个合法的子序列,小于往回走的次数是不是一定小于\(k\)?

考虑能否证明。我们将序列分成\(LL,RR,LR,RL\)四种合法的子序列(第一个字符表示序列开始是什么,第二个字符表示序列末尾是什么,因为只需要关心首尾字符),假设四种子序列分别有\(a,b,c,d\)个。首先有\(|a-b|\leq1\)。

然后我们可以用不超过\(a+b-1\)步将所有\(LL,RR\)合并成一个序列,这个序列可能是四种中的任意一种。

还可以用不超过\(c-1\)步将所有\(LR\)合并成一个\(LR\)。对\(RL\)同理。这样我们就得到了一个\(LR\)和一个\(RL\)子序列。

如果把其中一个子序列的最后一个字符给另一个,就可以变成一个\(LL\)和一个\(RR\),且不会增加次数。

那么不论刚开始\(LL,RR\)合并出的子序列是哪种,都可以用不超过两步拼接上剩下的两个子序列。

这样最多使用\(a+b-1+c-1+d-1+2=k-1\)步。这样就证明了,如果我们能能将序列划分成\(k\)个合法子序列,一定可以构造方案使得最多往回走\(k-1\)次。(可是我还是觉得有点迷...)

现在的问题是怎么讲序列划分成尽量少的合法子序列。

我们发现可以跑最小路径覆盖(每个\(L/R\)向它后面所有\(R/L\)连边,\(n-最大匹配数\)就是答案)(图在官方题解里有)。

但还可以发现这个匹配实际上可以直接贪心,每个字符选它能匹配的点中最靠前的匹配即可。因为一定可以调整最大匹配使得满足这种贪心。

那么复杂度就是\(O(n)\)的了。

具体做的时候,可以拿个栈模拟一下拼接...(菜到不会写.jpg)


//46ms	1900KB
#include <queue>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define AE(u,v) nxt[u]=v, pre[v]=u
typedef long long LL;
const int N=1e5+5; int top,pre[N],nxt[N];
std::queue<int> q[2];
char s[N];
struct Node
{
int l,r;
}sk[N]; bool Maintain()
{
if(top<=1) return 0;
Node a=sk[top],b=sk[top-1];
if(s[a.r]!=s[b.l])
{
AE(a.r,b.l), sk[--top]=(Node){a.l,b.r};
return 1;
}
if(s[a.l]!=s[b.r])
{
AE(b.r,a.l), sk[--top]=(Node){b.l,a.r};
return 1;
}
if(s[a.l]!=s[b.l])//LR RL
{
if(a.r>b.r) std::swap(a,b);
int p=pre[b.r];
AE(a.r,b.r), AE(b.r,b.l), nxt[p]=0, sk[--top]=(Node){a.l,p};
return 1;
}
return 0;
} int main()
{
scanf("%s",s+1);
const int n=strlen(s+1);
for(int i=1,c; i<=n; q[c^1].push(i++))
if(!q[c=s[i]=='L'].empty()) AE(q[c].front(),i), q[c].pop();
int ans=0;
for(int i=1; i<=n; ++i)
if(!pre[i])
{
++ans;
int p=i; while(nxt[p]) p=nxt[p];
sk[++top]=(Node){i,p};
while(Maintain());
}
printf("%d\n",ans-1);
for(int x=sk[1].l; x; x=nxt[x]) printf("%d ",x); return 0;
}

Codeforces.578E.Walking(构造)的更多相关文章

  1. CodeForces 578E Walking!

    题意 略. 题解 好毒瘤啊,我最多就口胡第一问的样子吧. 第一问很显然(跟凤凰县探险队员一样显然),就是每次贪心选长度最大的满足条件的子序列,选不到就折返回来.所以折返的次数很明显就是选出子序列的个数 ...

  2. codeforces 1041 e 构造

    Codeforces 1041 E 构造题. 给出一种操作,对于一棵树,去掉它的一条边.那么这颗树被分成两个部分,两个部分的分别的最大值就是这次操作的答案. 现在给出一棵树所有操作的结果,问能不能构造 ...

  3. Codeforces - 474D - Flowers - 构造 - 简单dp

    https://codeforces.com/problemset/problem/474/D 这道题挺好的,思路是这样. 我们要找一个01串,其中0的段要被划分为若干个连续k的0. 我们设想一个长度 ...

  4. Codeforces Global Round 8 B. Codeforces Subsequences(构造)

    题目链接:https://codeforces.com/contest/1368/problem/B 题意 构造最短的至少含有 $k$ 个 $codeforces$ 子序列的字符串. 题解 如下表: ...

  5. Codeforces 410C.Team[构造]

    C. Team time limit per test 1 second memory limit per test 256 megabytes input standard input output ...

  6. Codeforces 716C[数论][构造]

    /* CF傻逼构造题 某人要经过n回合游戏,初始分值是2,等级为1. 每次有两种操作 1.无条件,分值加上自己的等级数. 2.当目前的数字是完全平方数并且该数字开方以后是等级数加1的整数倍,那么可以将 ...

  7. Codeforces 1154D - Walking Robot - [贪心]

    题目链接:https://codeforces.com/contest/1154/problem/D 题解: 贪心思路,没有太阳的时候,优先用可充电电池走,万不得已才用普通电池走.有太阳的时候,如果可 ...

  8. Tea Party CodeForces - 808C (构造+贪心)

    Polycarp invited all his friends to the tea party to celebrate the holiday. He has ncups, one for ea ...

  9. New Roads CodeForces - 746G (树,构造)

    大意:构造n结点树, 高度$i$的结点有$a_i$个, 且叶子有k个. 先确定主链, 然后贪心放其余节点. #include <iostream> #include <algorit ...

随机推荐

  1. mysql下载源码方法

    方法一 进入mysql官网:http://dev.mysql.com/downloads/mysql/ 选择相关的平台下载: 3.选择Source Code 选型后,拉倒网页下方,选择要下载的源码包 ...

  2. jmeter 中如何一次运行多条sql语句

    在jmeter测试mysql中如何一次运行多条sql语句 allowMultiQueries=true 注意:太低版本的mysql和jdbc不支持,最好用最新版的

  3. python functools

    # 工具函数import functools print(dir(functools)) # partial函数(偏函数)def showarg(*args,**kw): print(args) pr ...

  4. jquery表单提交的新写法

    $('form').submit()和$("form").submit() 这两种都可以实现form表单的提交 jquery中$('form').submit()和$(" ...

  5. Go语言之匿名函数

    匿名函数和字面量函数一样, 凡是可以使用字面量函数的地方,都可以用匿名函数代替. 这个和js中的匿名函数差不多吧. package main import "fmt" var su ...

  6. golang ffmpeg 做网络直播

    最近在公司做在线视频转码的工作,研究了下ffmpeg 最后直接研究了下网络直播,我是在我自己的mac 上面测试的,效果,还可以,先看看效果图吧 ffmpeg 我是通过brew安装 的,这步就略了 VL ...

  7. 利用 Windows API Code Pack 修改音乐的 ID3 信息

    朋友由于抠门 SD 卡买小了,结果音乐太多放不下,又不舍得再买新卡,不得已决定重新转码,把音乐码率压低一点,牺牲点音质来换空间(用某些人的话说,反正不是搞音乐的,听不出差别)… 结果千千静听(百度音乐 ...

  8. poshytip基本使用

    js基本调用方法 $("#tips").poshytip({ content: $this.text(), alignTo: 'target', alignX: direction ...

  9. 用webstorm搭建vue项目

    本文只针对新手. 首先要明白几个名词(概念). Node.js: Node.js 是一个基于 Chrome V8 引擎的 JavaScript 运行环境. Node.js 使用了一个事件驱动.非阻塞式 ...

  10. Spring MVC基础知识整理➣环境搭建和Hello World

    概述 Spring MVC属于SpringFrameWork的产品,采用Model-View-Controller进行数据交互,已经融合在Spring Web Flow里面.Spring 框架提供了构 ...