AGC005F Many Easy Problems(NTT)
先只考虑求某个f(k)。考虑转换为计算每条边的贡献,也即该边被所选连通块包含的方案数。再考虑转换为计算每条边不被包含的方案数。这仅当所选点都在该边的同一侧。于是可得f(k)=C(n,k)+ΣC(n,k)-C(sizei,k)-C(n-sizei,k)。于是就可以O(n)求出某个f(k)了。
现在要求所有f(k),容易发现是一个卷积的形式,并且所给模数是一个隐蔽的NTT模数(最小原根是5),直接NTT即可。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 200010
#define P 924844033
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,p[N],size[N],fac[N],inv[N],r[N*],f[N*],g[N*],ans[N],t;
struct data{int to,nxt;
}edge[N<<];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
int ksm(int a,int k)
{
int s=;
for (;k;k>>=,a=1ll*a*a%P) if (k&) s=1ll*s*a%P;
return s;
}
int C(int n,int m){if (m>n) return ;return 1ll*fac[n]*inv[m]%P*inv[n-m]%P;}
void dfs(int k,int from)
{
size[k]=;
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=from)
{
dfs(edge[i].to,k);
size[k]+=size[edge[i].to];
}
}
void force()
{
for (int k=;k<=n;k++)
{
int ans=1ll*C(n,k)*(n+)%P;
for (int i=;i<=n;i++)
ans=((ans-C(size[i],k)-C(n-size[i],k))%P+P)%P;
printf("%d\n",ans);
}
}
void DFT(int *a,int n,int g)
{
for (int i=;i<n;i++) if (i<r[i]) swap(a[i],a[r[i]]);
for (int i=;i<=n;i<<=)
{
int wn=ksm(g,(P-)/i);
for (int j=;j<n;j+=i)
{
int w=;
for (int k=j;k<j+(i>>);k++,w=1ll*w*wn%P)
{
int x=a[k],y=1ll*w*a[k+(i>>)]%P;
a[k]=(x+y)%P;a[k+(i>>)]=(x-y+P)%P;
}
}
}
}
void work()
{
memset(f,,sizeof(f));memset(g,,sizeof(g));
int t=;while (t<=(n<<)) t<<=;
for (int i=;i<t;i++) r[i]=(r[i>>]>>)|(i&)*(t>>);
for (int i=;i<=n;i++) f[size[i]]=(f[size[i]]+fac[size[i]])%P;
reverse(f,f+n+);
for (int i=;i<=n;i++) g[i]=inv[i];
DFT(f,t,),DFT(g,t,);
for (int i=;i<t;i++) f[i]=1ll*f[i]*g[i]%P;
DFT(f,t,ksm(,P-));
reverse(f,f+n+);
int u=ksm(t,P-);
for (int i=;i<=n;i++) ans[i]=(ans[i]-1ll*f[i]*u%P*inv[i]%P+P)%P;
}
int main()
{
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
n=read();
for (int i=;i<n;i++)
{
int x=read(),y=read();
addedge(x,y),addedge(y,x);
}
dfs(,);
fac[]=;for (int i=;i<=n;i++) fac[i]=1ll*fac[i-]*i%P;
inv[]=inv[]=;for (int i=;i<=n;i++) inv[i]=P-1ll*(P/i)*inv[P%i]%P;
for (int i=;i<=n;i++) inv[i]=1ll*inv[i-]*inv[i]%P;
//force();
for (int i=;i<=n;i++) ans[i]=1ll*C(n,i)*(n+)%P;
work();
for (int i=;i<=n;i++) size[i]=n-size[i];
work();
for (int i=;i<=n;i++) printf("%d\n",ans[i]);
return ;
}
AGC005F Many Easy Problems(NTT)的更多相关文章
- 【BZOJ5306】[HAOI2018]染色(NTT)
[BZOJ5306]染色(NTT) 题面 BZOJ 洛谷 题解 我们只需要考虑每一个\(W[i]\)的贡献就好了 令\(lim=min(M,\frac{N}{S})\) 那么,开始考虑每一个\(W[i ...
- 【LOJ6436】【PKUSC2018】神仙的游戏(NTT)
[LOJ6436][PKUSC2018]神仙的游戏(NTT) 题面 LOJ 题解 看到\(zsy\)从\(PKUSC\)回来就秒掉了这种神仙题 吓得我也赶快看了看\(PKUSC\)都有些什么神仙题 然 ...
- 快速数论变换(NTT)
刚学完FFT,干脆把NTT也学了算了 (一)预备知识 关于原根,这里说得蛮详细的百度百科 为什么使用原根呢?为什么原根可以替代\(\omega_{n}\)呢?想知道为什么就看here NTT用到的各种 ...
- Saving James Bond - Easy Version (MOOC)
06-图2 Saving James Bond - Easy Version (25 分) This time let us consider the situation in the movie & ...
- 「算法笔记」快速数论变换(NTT)
一.简介 前置知识:多项式乘法与 FFT. FFT 涉及大量 double 类型数据操作和 \(\sin,\cos\) 运算,会产生误差.快速数论变换(Number Theoretic Transfo ...
- LOJ565. 「LibreOJ Round #10」mathematican 的二进制(NTT)
题目链接 https://loj.ac/problem/565 题解 首先,若进行所有操作之后成功执行的操作数为 \(m\),最终得到的数为 \(w\),那么发生改变的二进制位的数量之和(即代价之和) ...
- loj#6436. 「PKUSC2018」神仙的游戏(NTT)
题面 传送门 题解 一旦字符串踏上了通配符的不归路,它就永远脱离了温暖的字符串大家庭的怀抱 用人话说就是和通配符扯上关系的字符串就不是个正常的字符串了比如说这个 让我们仔细想想,如果一个长度为\(le ...
- 【BZOJ4555】[TJOI2016&HEOI2016] 求和(NTT)
点此看题面 大致题意: 计算\(\sum_{i=0}^n\sum_{j=0}^iS(i,j)*2^j*(j!)\),其中\(S\)为第二类斯特林数. 推式子 首先让我们来推一波式子: 因为当\(i&l ...
- 洛谷P4238 【模板】多项式求逆(NTT)
传送门 学习了一下大佬的->这里 已知多项式$A(x)$,若存在$A(x)B(x)\equiv 1\pmod{x^n}$ 则称$B(x)$为$A(x)$在模$x^n$下的逆元,记做$A^{-1} ...
随机推荐
- 看think in java 随笔
java的方法是运行期动态绑定上去的,可以根据自己真正实例化的类来判断调用哪个方法,比如子类重写了父类方法,会调用子类方法. 而利用final关键字可以让方法不能重写,就可以在编译期就绑定,这样就可以 ...
- kubernetes session回话保持
1.Nginx 版本 root@ingress-nginx-controller-4b75b:/# /usr/sbin/nginx -vnginx version: nginx/1.13.9 2.in ...
- Luogu4040 AHOI/JSOI2014 宅男计划 贪心、二分、三分
传送门 仍然对"为什么这个函数单峰"的问题毫无理解 首先,对于保质期又低.价格又贵的食物,我们显然不需要购买它.所以如果设\(pri_i\)表示保质期不小于\(i\)的所有食品中价 ...
- [Spark][Python]对HDFS 上的文件,采用绝对路径,来读取获得 RDD
对HDFS 上的文件,采用绝对路径,来读取获得 RDD: In [102]: mydata=sc.textFile("file:/home/training/test.txt")1 ...
- Hogp连接流程分析
当BLE设备已经完成配对,并且完成GATT服务的搜索,下一步就开始profile 的连接流程了,一般LE设备都是走的HOGP的流程,我们这篇文章就分析一下hogp的连接流程. 连接是从framewor ...
- 个人java框架 技术分析
1.框架选型 spring-boot https://github.com/JeffLi1993/springboot-learning-example https://mp.weixin.qq.co ...
- centos下部署NTP时间服务器同步环境记录
1)服务端部署 安装所需软件包 [root@test ~]# yum -y install ntp ntpdate 服务端自己先手工同步一次时间. [root@test ~]# ntpdate ntp ...
- JavaScript术语:shim 和 polyfill
转自:https://www.html.cn/archives/8339 在学习和使用 JavaScript 的时候,我们会经常碰到两个术语:shim 和 polyfill.它们有许多定义和解释,意思 ...
- db2安装
官网下载: DB2 11.1 data server trial for Linux® on AMD64 and Intel® EM64T systems (x64)v11.1_linuxx64_se ...
- cf166e 在四面体上寻找路线数 递推,取模
来源:codeforces E. Tetrahedron You are given a tetrahedron. Let's mark its vertices ...