先只考虑求某个f(k)。考虑转换为计算每条边的贡献,也即该边被所选连通块包含的方案数。再考虑转换为计算每条边不被包含的方案数。这仅当所选点都在该边的同一侧。于是可得f(k)=C(n,k)+ΣC(n,k)-C(sizei,k)-C(n-sizei,k)。于是就可以O(n)求出某个f(k)了。

  现在要求所有f(k),容易发现是一个卷积的形式,并且所给模数是一个隐蔽的NTT模数(最小原根是5),直接NTT即可。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 200010
#define P 924844033
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,p[N],size[N],fac[N],inv[N],r[N*],f[N*],g[N*],ans[N],t;
struct data{int to,nxt;
}edge[N<<];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
int ksm(int a,int k)
{
int s=;
for (;k;k>>=,a=1ll*a*a%P) if (k&) s=1ll*s*a%P;
return s;
}
int C(int n,int m){if (m>n) return ;return 1ll*fac[n]*inv[m]%P*inv[n-m]%P;}
void dfs(int k,int from)
{
size[k]=;
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=from)
{
dfs(edge[i].to,k);
size[k]+=size[edge[i].to];
}
}
void force()
{
for (int k=;k<=n;k++)
{
int ans=1ll*C(n,k)*(n+)%P;
for (int i=;i<=n;i++)
ans=((ans-C(size[i],k)-C(n-size[i],k))%P+P)%P;
printf("%d\n",ans);
}
}
void DFT(int *a,int n,int g)
{
for (int i=;i<n;i++) if (i<r[i]) swap(a[i],a[r[i]]);
for (int i=;i<=n;i<<=)
{
int wn=ksm(g,(P-)/i);
for (int j=;j<n;j+=i)
{
int w=;
for (int k=j;k<j+(i>>);k++,w=1ll*w*wn%P)
{
int x=a[k],y=1ll*w*a[k+(i>>)]%P;
a[k]=(x+y)%P;a[k+(i>>)]=(x-y+P)%P;
}
}
}
}
void work()
{
memset(f,,sizeof(f));memset(g,,sizeof(g));
int t=;while (t<=(n<<)) t<<=;
for (int i=;i<t;i++) r[i]=(r[i>>]>>)|(i&)*(t>>);
for (int i=;i<=n;i++) f[size[i]]=(f[size[i]]+fac[size[i]])%P;
reverse(f,f+n+);
for (int i=;i<=n;i++) g[i]=inv[i];
DFT(f,t,),DFT(g,t,);
for (int i=;i<t;i++) f[i]=1ll*f[i]*g[i]%P;
DFT(f,t,ksm(,P-));
reverse(f,f+n+);
int u=ksm(t,P-);
for (int i=;i<=n;i++) ans[i]=(ans[i]-1ll*f[i]*u%P*inv[i]%P+P)%P;
}
int main()
{
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
n=read();
for (int i=;i<n;i++)
{
int x=read(),y=read();
addedge(x,y),addedge(y,x);
}
dfs(,);
fac[]=;for (int i=;i<=n;i++) fac[i]=1ll*fac[i-]*i%P;
inv[]=inv[]=;for (int i=;i<=n;i++) inv[i]=P-1ll*(P/i)*inv[P%i]%P;
for (int i=;i<=n;i++) inv[i]=1ll*inv[i-]*inv[i]%P;
//force();
for (int i=;i<=n;i++) ans[i]=1ll*C(n,i)*(n+)%P;
work();
for (int i=;i<=n;i++) size[i]=n-size[i];
work();
for (int i=;i<=n;i++) printf("%d\n",ans[i]);
return ;
}

AGC005F Many Easy Problems(NTT)的更多相关文章

  1. 【BZOJ5306】[HAOI2018]染色(NTT)

    [BZOJ5306]染色(NTT) 题面 BZOJ 洛谷 题解 我们只需要考虑每一个\(W[i]\)的贡献就好了 令\(lim=min(M,\frac{N}{S})\) 那么,开始考虑每一个\(W[i ...

  2. 【LOJ6436】【PKUSC2018】神仙的游戏(NTT)

    [LOJ6436][PKUSC2018]神仙的游戏(NTT) 题面 LOJ 题解 看到\(zsy\)从\(PKUSC\)回来就秒掉了这种神仙题 吓得我也赶快看了看\(PKUSC\)都有些什么神仙题 然 ...

  3. 快速数论变换(NTT)

    刚学完FFT,干脆把NTT也学了算了 (一)预备知识 关于原根,这里说得蛮详细的百度百科 为什么使用原根呢?为什么原根可以替代\(\omega_{n}\)呢?想知道为什么就看here NTT用到的各种 ...

  4. Saving James Bond - Easy Version (MOOC)

    06-图2 Saving James Bond - Easy Version (25 分) This time let us consider the situation in the movie & ...

  5. 「算法笔记」快速数论变换(NTT)

    一.简介 前置知识:多项式乘法与 FFT. FFT 涉及大量 double 类型数据操作和 \(\sin,\cos\) 运算,会产生误差.快速数论变换(Number Theoretic Transfo ...

  6. LOJ565. 「LibreOJ Round #10」mathematican 的二进制(NTT)

    题目链接 https://loj.ac/problem/565 题解 首先,若进行所有操作之后成功执行的操作数为 \(m\),最终得到的数为 \(w\),那么发生改变的二进制位的数量之和(即代价之和) ...

  7. loj#6436. 「PKUSC2018」神仙的游戏(NTT)

    题面 传送门 题解 一旦字符串踏上了通配符的不归路,它就永远脱离了温暖的字符串大家庭的怀抱 用人话说就是和通配符扯上关系的字符串就不是个正常的字符串了比如说这个 让我们仔细想想,如果一个长度为\(le ...

  8. 【BZOJ4555】[TJOI2016&HEOI2016] 求和(NTT)

    点此看题面 大致题意: 计算\(\sum_{i=0}^n\sum_{j=0}^iS(i,j)*2^j*(j!)\),其中\(S\)为第二类斯特林数. 推式子 首先让我们来推一波式子: 因为当\(i&l ...

  9. 洛谷P4238 【模板】多项式求逆(NTT)

    传送门 学习了一下大佬的->这里 已知多项式$A(x)$,若存在$A(x)B(x)\equiv 1\pmod{x^n}$ 则称$B(x)$为$A(x)$在模$x^n$下的逆元,记做$A^{-1} ...

随机推荐

  1. docker核心概念(镜像、容器、仓库)及基本操作

    概要 docker是一种linux容器技术.容器有效的将由单个操作系统挂管理的资源划分到孤立的组中,以便更好的在组之间平衡有冲突的资源使用需求.可简单理解为一种沙盒 .每个容器内运行一个应用,不同的容 ...

  2. CF1039D You Are Given a Tree 根号分治、二分、贪心

    传送门 似乎直接做不太好做-- 当你不会做的时候就可以考虑根号算法了(或许是这样的 考虑如果只有一个询问如何计算答案. 显然是可以贪心的,思路与NOIP2018D1T3是相同的.每一个点向上传一条链, ...

  3. Java并发——线程中断学习

    1. 使用interrupt()中断线程 当一个线程运行时,另一个线程可以调用对应的Thread对象的interrupt()方法来中断它,该方法只是在目标线程中设置一个标志,表示它已经被中断,并立即返 ...

  4. bitset常用用法&&简单题分析

    Preface bitset,还是一个比较好用的STL,可以给一些题目做到神奇的常数优化(\(O(\frac{原来的复杂度}{机器的位数(32位or64位)})\)) 关于一些具体的函数等内容可以参考 ...

  5. Mac 启动 ssh 服务

    Mac 本身有 ssh,只是没有默认开启,需要手动开启. 启动 sudo launchctl load -w /System/Library/LaunchDaemons/ssh.plist 关闭 su ...

  6. FFMPEG指令

    FFmpeg是一个用于音视频处理的自由软件,被广泛用于音视频开发.FFmpeg功能强大,本文主要介绍如何使用FFmpeg命令行工具进行简单的视频处理. 安装FFmpeg可以在官网下载各平台软件包或者静 ...

  7. linux下安装redis组件报错-gcc报错

    报错如图: 1.解决办法    先安装gcc插件.删除redis解压后文件.重新解压

  8. vim命令记录

    最近开始用vim作为日常编辑器,由于vim的命令过多,现在记录一下

  9. linux-流程控制语言

    if: for: 增强for循环 while: 统计这个目录下所有文件的大小 编写脚本 执行 help text:

  10. 20135337——linux第四次实践:字符集总结与分析

    ASCII & GB2312 & UTF-8 ASCII 主要用于显示现代英语和其他西欧语言.它是现今最通用的单字节编码系统,并等同于国际标准ISO 646: 7位(bits)表示一个 ...