题目描述

Byteasar is a famous safe-cracker, who renounced his criminal activity and got into testing and certifying anti-burglary devices. He has just received a new kind of strongbox for tests: a combinatorial safe. A combinatorial safe is something different from a combination safe, even though it is opened with a rotary dial. The dial can be set in different positions, numbered from 0 to n-1. Setting the dial in some of these positions opens the safe, while in others it does not. And here is the combinatorial property, from which the name comes from: if x and y are opening positions, then so is (x+y) mod n too; note that is holds for x=y as well.
Byteasar tried k different positions of the dial: m1,m2….mk. The positions M1,M 2….Mk-1 did not open the safe, only the last position Mk did. Byteasar is already tired from checking these K positions and has thus absolutely no intention of trying the remaining ones. He would like to know however, based on what he already knows about the positions he tried, what is the maximum possible number of positions that open the safe. Help him by writing an appropriate program!

有一个密码箱,0到n-1中的某些整数是它的密码。
且满足,如果a和b都是它的密码,那么(a+b)%n也是它的密码(a,b可以相等)
某人试了k次密码,前k-1次都失败了,最后一次成功了。
问:该密码箱最多有多少不同的密码。

输入

The first line of the standard input gives two integers N and k, separated by a single space, (1<=K<=250000,k<=N<=10^14), The second line holds K different integers, also separated by single spaces, m1,m2….mk, 0<=Mi<N. You can assume that the input data correspond to a certain combinatorial safe that complies with the description above.
In tests worth approximately 70% of the points it holds that k<=1000. In some of those tests, worth approximately 20% of the points, the following conditions hold in addition: N< 10 ^8 and K<=100.

第一行n,k
下面一行k个整数,表示每次试的密码
保证存在合法解

1<=k<=250000 k<=n<=10^14

输出

Your program should print out to the first and only line of the standard output a single integer: the maximum number of the dial's positions that can open the safe.

一行,表示结果

样例输入

42 5
28 31 10 38 24

样例输出

14
 
  如果x,y是密码,那么gcd(x,y)的倍数就都是密码(证明在最后)。同理,如果x是密码,那么2x,3x,4x……kx都是密码,那么gcd(x,n)的倍数就都是密码,反之则一定不是。因为前k-1次都没试出来,所以gcd(a[i],n)(i<k)就都不是密码,假设x是密码,那么x一定不是gcd(a[i],n)的约数,又因为gcd(a[k],n)是密码,所以x一定是gcd(a[k],n)的约数,枚举gcd(a[k],n)的约数验证,取n/x最大的就好了。为什么两个数i,j都满足但答案不能是n/i+n/j?因为如果i,j互质,那么gcd(i,j)=1,这样所有n内的数就都是密码了,显然不行。如果i,j不互质,那么gcd(i,j)的答案在前面已经被计算过了,n/i+n/j会重复。
证明:
设d=gcd(x,y),x=a*d,y=b*d,因为px+qy一定是密码(p,q>0),所以d*(ap+bq)就一定是密码。而gcd(x,y)的任意倍数是d*(ap'+bq')其中p',q'不一定是正数,那么只要保证(ap'+bq')在%n意义下且在p',q'>0时能表示所有正数就好了。因为a,b互质,所以ap'+bq'=1一定有解,但其中有一个一定是负数,只要把那个数一直+n直到为正就好了。加一个数的n倍%n结果不变。再把上述二元一次方程左右两边扩大任意倍数,就能表示d的任意倍了。
#include<map>
#include<set>
#include<queue>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int k;
int flag;
long long ans;
long long n;
long long a[250010];
long long gcd(long long x,long long y)
{
if(y==0)
{
return x;
}
return gcd(y,x%y);
}
int cnt=0;
bool check(long long x)
{
for(int i=1;i<=cnt;i++)
{
if(a[i]%x==0)
{
return false;
}
}
return true;
}
int main()
{
long long y;
scanf("%lld%d",&n,&k);
for(int i=1;i<=k;i++)
{
scanf("%lld",&a[i]);
a[i]=gcd(a[i],n);
}
long long x=a[k];
ans=n;
sort(a+1,a+k);
for(int i=1;i<k;i++)
{
if(a[i]!=a[i-1])
{
a[++cnt]=a[i];
}
}
for(long long i=1;i*i<=x;i++)
{
if(x%i==0)
{
if(check(i))
{
ans=n/i;
break;
}
else if(check(a[k]/i))
{
ans=n/a[k]*i;
}
}
}
printf("%lld",ans);
}

BZOJ2277[Poi2011]Strongbox——数论的更多相关文章

  1. bzoj 2277 [Poi2011]Strongbox 数论

    2277: [Poi2011]Strongbox Time Limit: 60 Sec  Memory Limit: 32 MBSubmit: 527  Solved: 231[Submit][Sta ...

  2. bzoj2277 [Poi2011]Strongbox

    2277: [Poi2011]Strongbox Time Limit: 60 Sec  Memory Limit: 32 MBSubmit: 498  Solved: 218[Submit][Sta ...

  3. BZOJ2277 [Poi2011]Strongbox 【数论】

    题目链接 BZOJ2277 题解 orz太难了 如果一个数\(x\)是密码,那么所有\((x,n)\)的倍数都是密码 如果两个数\(x,y\)是密码,那么所有\((x,y)\)的倍数都是密码 那么如果 ...

  4. 【BZOJ】2277: [Poi2011]Strongbox

    题意 有一个密码箱,\(0\)到\(n-1\)中的某些整数是它的密码.如果\(a\)和\(b\)都是它的密码,那么\((a+b)%n\)也是它的密码(\(a,b\)可以相等).某人试了\(k\)次密码 ...

  5. BZOJ 2277 Poi2011 Strongbox

    题目大意:一个集合A,包含了0~n-1这n个数.另有一个集合B,满足: 1.B是A的子集. 2.如果a.b均在B中,则(a+b)%n也在B中(a=b亦可) 给出k个数ai,前k-1个不在B中,第k个在 ...

  6. POI2011题解

    POI2011题解 2214先咕一会... [BZOJ2212][POI2011]Tree Rotations 线段树合并模板题. #include<cstdio> #include< ...

  7. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  8. POI做题笔记

    POI2011 Conspiracy (2-SAT) Description \(n\leq 5000\) Solution 发现可拆点然后使用2-SAT做,由于特殊的关系,可以证明每次只能交换两个集 ...

  9. [poi2011]bzoj 2277 —— strongbox·[洛谷3518]

    ·问题描述· 有一个密码箱,0到n-1中的某些数是它的密码.且满足:如果a和b都是它的密码,那么(a+b)%n也是它的密码.某人试了k次密码,前k-1次都失败了,最后一次成功. 问:该密码箱最多有多少 ...

随机推荐

  1. 【Codeforces 3D】Least Cost Bracket Sequence

    Codeforces 3 D 题意:有一个括号序列,其中一些位置是问号,把第\(i\)个问号改成(需要\(a_i\)的代价,把它改成)需要\(b_i\)的代价. 问使得这个括号序列成立所需要的最小代价 ...

  2. 【Codeforces 1105E】Helping Hiasat

    Codeforces 1105 E 题意:给你m个事件,每个事件可能是以下两种之一: \(1\),代表此时可以更改用户名 \(2\) \(s\),代表\(s\)来查看是否用户名与其名字相符 一共有\( ...

  3. java 数据类型和运算符

    1.注释 单行注释:  //哈哈哈 多行注释: /* 啦啦啦 */ 文档注释: /**    */注释中包含一些说明性的文字及一些JavaDoc标签(后期写项目时,可以生成项目的API)        ...

  4. Mac安装LNMP环境,升级php7

    Mac安装nginx+mysql+php 安装nginx比较麻烦,要安装pcre       ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre ...

  5. odoo 学习

    1.2.3.41.2.5.62.410.6变成1.234,1.256,2.4,10.6 def get_bom_namenum(self, cr, uid, ids, field_name, arg, ...

  6. JDK 升级问题小结

    JDK8 发布很久了,它提供了许多吸引人的新特性,能够提高编程效率. 如果是新的项目,使用 JDK8 当然是最好的选择.但是,对于一些老的项目,升级到 JDK8 则存在一些兼容性问题,是否升级需要酌情 ...

  7. SpringBoot 异常处理

    异常处理最佳实践 根据我的工作经历来看,我主要遵循以下几点: 尽量不要在代码中写try...catch.finally把异常吃掉. 异常要尽量直观,防止被他人误解 将异常分为以下几类,业务异常,登录状 ...

  8. 【php增删改查实例】第二十节 - 把用户管理页面集成到main.php中

    把这个代码: <a href="javascript:openTab('用户管理','user/userManage.html ','icon-roleManage')" c ...

  9. 谈谈ThreadLocal的设计及不足

    用Java语言开发的同学对 ThreadLocal 应该都不会陌生,这个类的使用场景很多,特别是在一些框架中经常用到,比如数据库事务操作,还有MVC框架中数据跨层传递.这里我们简要探讨下 Thread ...

  10. 时区提示:Local time zone must be set--see zic manual page 2018的解决办法

    问题描述:在centos服务器上执行date命令时,显示的时间信息中的时区不正常,如下: [root@ulocalhost ~]# date Mon Apr 9 02:57:38 Local time ...