论文笔记【一】Chinese NER Using Lattice LSTM
论文:Chinese NER Using Lattice LSTM
论文链接:https://arxiv.org/abs/1805.02023
论文作者:Yue Zhang∗and Jie Yang∗
项目链接:https://github.com/jiesutd/LatticeLSTM
论文翻译:转自机器之心 https://www.jiqizhixin.com/articles/ACL2018-Chinese-NER-Using-Lattice-LSTM
一、摘要
该篇论文是基于字符的LSTM,以Lattice嵌入为输入的模型,该模型对输入字符序列和所有匹配词典的潜在词汇进行编码。
优点:
- 与基于字符的方法相比,该模型显性地利用词和词序信息。
- 与基于词的方法相比,lattice LSTM 不会出现分词错误。
- 门控循环单元使得模型能够从句子中选择最相关的字符和词,以生成更好的 NER 结果。
最终的结果是在多个数据集上的实验证明 lattice LSTM 优于基于词和基于字符的 LSTM 基线模型,达到了最优的结果。它在MSRA数据集上实现了93.18%的F1值。
二、研究介绍
在已有的研究中,中文 NER 中,基于字符的方法表现要优于基于词的方法(He and Wang, 2008; Liu et al., 2010; Li et al., 2014),但是基于字符的 NER 的一个缺陷在于无法充分利用显性的词和词序信息。
实验思路:研究者利用 lattice LSTM 来表征句子中的 lexicon word,从而将潜在词信息整合到基于字符的 LSTM-CRF 中。研究者使用一个大型自动获取的词典来匹配句子,进而构建基于词的 lattice。
如下图所示,门控单元用于将来自不同路径的信息动态传送到每个字符。在 NER 数据上训练后,lattice LSTM 能够学会从语境中自动找到更有用的词,以取得更好的 NER 性能。

三、模型
在目前,英文 NER 的最高水准是使用 LSTM-CRF 模型实现的,研究者同样使用了 LSTM-CRF 作为主要网络结构。
形式上,指定输入句子为 s = c_1, c_2, . . . , c_m,其中 c_j 指第 j 个字符。s 还可以作为词序列 s = w_1, w_2, . . . , w_n,其中 w_i 指句子中的第 i 个词,使用中文分词器获得。使用 t(i, k) 来指句子第 i 个词中第 k 个字符的索引 j。
以图 1 中的句子为例。如果分词是「南京市 长江大桥」,索引从 1 开始,则 t(2, 1) = 4 (长),t(1, 3) = 3 (市)。研究者使用 BIOES 标记规则(Ratinov and Roth, 2009)进行基于词和基于字符的 NER 标记。

四、实验
数据集:本文使用了四个数据集,其中包括
- Onto Notes 4(Weischedel等,2011)
- MSRA(Levow,2006)
- 微博NER(Peng和Dredze,2015; He和Sun,2017a)https://www.weibo.com/
- 研究者注释的中文简历数据集。http://finance.sina.com.cn/stock/index.shtml
分词模型: 对于微博和简历,研究者采用杨等人的最佳模型(2017a,https://github.com/jiesutd/Rich Word Segmentor)现成的,使用CTB 6.0训练。
词嵌入:研究者使用word2vec(Mikolov等,2013)对自动分割的中文Giga-Word (https://catalog.ldc.upenn.edu/LDC2011T13),预先训练单词嵌入,在最后一个词典中获得704.4k个单词。 在NER训练期间,可以对字嵌入进行微调。 字符和字符双字母嵌入使用word2vec在中文Giga-word上进行预训练,并在模型训练中进行微调。。
超参数设置:嵌入大小(embedding sizes)设置为50,LSTM模型的隐藏大小(hidden size)设置为200. Dropout(Srivastava等,2014)应用于单词和字符嵌入,速率为0.5。 随机梯度下降(SGD)用于优化,初始学习率(initial learning rate)为0.015,衰减率(decay rate)为0.05。
五、结论
与word + char + bichar和char + bichar + softword相比,lattice模型对句子长度的增加表现出更强的鲁棒性,证明了词语信息的更有效使用。
研究者凭经验研究了中文NER的lattice LSTM-CRF表示,发现它与不同领域的word-based 和 character-based LSTM-CRF相比具有始终如一的优越性能。 由于在NER消歧的上下文中选择词典单词的自由度,lattice方法完全独立于分词,但在使用单词信息方面更有效。
论文笔记【一】Chinese NER Using Lattice LSTM的更多相关文章
- Multimodal —— 看图说话(Image Caption)任务的论文笔记(一)评价指标和NIC模型
看图说话(Image Caption)任务是结合CV和NLP两个领域的一种比较综合的任务,Image Caption模型的输入是一幅图像,输出是对该幅图像进行描述的一段文字.这项任务要求模型可以识别图 ...
- 论文笔记(1):Deep Learning.
论文笔记1:Deep Learning 2015年,深度学习三位大牛(Yann LeCun,Yoshua Bengio & Geoffrey Hinton),合作在Nature ...
- 论文笔记:Towards Diverse and Natural Image Descriptions via a Conditional GAN
论文笔记:Towards Diverse and Natural Image Descriptions via a Conditional GAN ICCV 2017 Paper: http://op ...
- 【论文笔记】Malware Detection with Deep Neural Network Using Process Behavior
[论文笔记]Malware Detection with Deep Neural Network Using Process Behavior 论文基本信息 会议: IEEE(2016 IEEE 40 ...
- Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记
Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记 arXiv 摘要:本文提出了一种 DRL 算法进行单目标跟踪 ...
- 序列标注(BiLSTM-CRF/Lattice LSTM)
前言 在三大特征提取器中,我们已经接触了LSTM/CNN/Transormer三种特征提取器,这一节我们将介绍如何使用BiLSTM实现序列标注中的命名实体识别任务,以及Lattice-LSTM的模型原 ...
- 【论文笔记】Learning Fashion Compatibility with Bidirectional LSTMs
论文:<Learning Fashion Compatibility with Bidirectional LSTMs> 论文地址:https://arxiv.org/abs/1707.0 ...
- Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现(转)
Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文, ...
- 论文笔记之:Visual Tracking with Fully Convolutional Networks
论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015 CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做 ...
随机推荐
- linux系统关闭指定服务的方式
1.根据名称称查找并关闭:pgrep -f 名称 | xargs kill -9 2.根据端口称查找并关闭:lsof -i:端口 | grep LISTEN|awk '{print $2}'|xarg ...
- 使用isEmpty()报空指针异常
使用isEmpty()是出现了空指针异常NullpointException: 原来isEmpty()用来判断一个变量是否已经初始化了,因为“”和new 的时候系统都会为其分配内存,不管是否有值,当为 ...
- 百度Aip人脸识别之python代码
用python来做人脸识别代码量少 思路清晰, 在使用之前我们需要在我们的配置的编译器中通过pip install baidu-aip 即可 from aip import AipFace 就可以开 ...
- J - Network of Schools
来源poj1236 A number of schools are connected to a computer network. Agreements have been developed am ...
- poj 3126 Prime Path(搜索专题)
Prime Path Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 20237 Accepted: 11282 Desc ...
- Spring 注解配置(2)——@Autowired
版权声明:本文为博主原创文章,如需转载请标注转载地址. 博客地址:http://www.cnblogs.com/caoyc/p/5626365.html @Autowired 注释,它可以对类成员变 ...
- ffmpeg快速获取视频截图
使用ffmpeg可以非常方便的生成视频截图,命令行下的mplayer也可以做视频截图,只不过mplayer在本质上还是调用ffmpeg来实现.ffmpeg 通过指定 -vcodec 参数为 mjpeg ...
- swiper嵌套小demo(移动端触摸滑动插件)
swiper(移动端触摸滑动插件) tip:自己敲得Swiper 的小demo,可以复制粘贴看看效果哦. swiper的js包css包下链接地址 : https://github.com/Clear ...
- GitLab上传项目到新的分支
多人协同开发,GitLab上的group仓库里的master分支作为开发分支(最终从dev提交的代码),dev分支作为每个人的代码测试后合并的分支,每个人需要定期merge request自己的分支到 ...
- 主席树 || 可持久化线段树 || LCA || BZOJ 2588: Spoj 10628. Count on a tree || Luogu P2633 Count on a tree
题面: Count on a tree 题解: 主席树维护每个节点到根节点的权值出现次数,大体和主席树典型做法差不多,对于询问(X,Y),答案要计算ans(X)+ans(Y)-ans(LCA(X,Y) ...