TensorFlow 入门之手写识别(MNIST) softmax算法 二

MNIST
Fly
softmax回归

softmax回归算法

我们知道MNIST的每一张图片都表示一个数字,从0到9。我们希望得到给定图片代表每个数字的概率。比如说,我们的模型可能推测一张包含9的图片代表数字9的概率是80%但是判断它是8的概率是5%(因为8和9都有上半部分的小圆),然后给予它代表其他数字的概率更小的值。

这是一个使用softmax回归(softmax regression)模型的经典案例。 softmax 模型可以用来给不同的对象分配概率。即使在之后,我们训练更加精细的模型时,最后一步也需要用softmax来分配概率。

这是一个使用softmax回归(softmax regression)模型的经典案例。softmax模型可以用来给不同的对象分配概率。即使在之后,我们训练更加精细的模型时,最后一步也需要用softmax来分配概率。

softmax回归(softmax regression)分两步:第一步

为了得到一张给定图片属于某个特定数字类的证据(evidence),我们对图片像素值进行加权求和。如果这个像素具有很强的证据说明这张图片不属于该类,那么相应的权值为负数,相反如果这个像素拥有有利的证据支持这张图片属于这个类,那么权值是正数。

下面的图片显示了一个模型学习到的图片上每个像素对于特定数字类的权值。红色代表负数权值,蓝色代表正数权值。

数字的特征

我们也需要加入一个额外的偏置量(bias),因为输入往往会带有一些无关的干扰量。因此对于给定的输入图片x它代表的是数字i的证据可以表示为

求和

其中Wi代表权重,bi 代表数字 i 类的偏置量,j 代表给定图片 x 的像素索引用于像素求和。然后用softmax函数可以把这些证据转换成概率 y:

激励函数

这的softmax可是看做是一个sigmoid形式的函数。把我们定义的线性函数的输出转换成我们想要的格式,也就是关于10个数字类的概率分布。因此,给定一张图片,它对于每一个数字的吻合度可以被softmax函数转换成为一个概率值。

归一化处理

展开等式右边的子式,可以得到:

softmax使用的公式

对于softmax回归模型可以用下面的图解释,对于输入的xs加权求和,再分别加上一个偏置量,最后再输入到softmax函数中:

softmax运行方式

如果把它写成一个等式,我们可以得到:

softmax数学表达式

我们也可以用向量表示这个计算过程:用矩阵乘法和向量相加。这有助于提高计算效率。(也是一种更有效的思考方式):

softmax矩阵表现形式

更进一步,可以写成更加紧凑的方式:

最终会使用的表达式

TensorFlow实现softmax

  1. # create a softmax regression 


  2. import tensorflow as tf 

  3. from tensorflow.examples.tutorials.mnist import input_data 


  4. mnist = input_data.read_data_sets("/home/fly/TensorFlow/mnist", one_hot=True) 


  5. x = tf.placeholder(tf.float32,[None, 784]) 


  6. W = tf.Variable(tf.zeros([784, 10])) 


  7. b = tf.Variable(tf.zeros([10])) 


  8. y = tf.nn.softmax(tf.matmul(x,W)+b) 


  9. y_ = tf.placeholder(tf.float32,[None, 10]) 


  10. cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])) 


  11. train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) 


  12. init = tf.initialize_all_variables() 

  13. sess = tf.Session() 

  14. sess.run(init) 


  15. for i in range(1000): 

  16. batch_xs, batch_ys = mnist.train.next_batch(100) 

  17. sess.run(train_step, feed_dict = {x: batch_xs, y_: batch_ys}) 


  18. correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_,1)) 

  19. accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) 

  20. print(sess.run(accuracy, feed_dict={x:mnist.test.images, y_: mnist.test.labels})) 



Fly

2016.6

TensorFlow 入门之手写识别(MNIST) softmax算法 二的更多相关文章

  1. TensorFlow 入门之手写识别(MNIST) softmax算法

    TensorFlow 入门之手写识别(MNIST) softmax算法 MNIST flyu6 softmax回归 softmax回归算法 TensorFlow实现softmax softmax回归算 ...

  2. TensorFlow 入门之手写识别(MNIST) 数据处理 一

    TensorFlow 入门之手写识别(MNIST) 数据处理 一 MNIST Fly softmax回归 准备数据 解压 与 重构 手写识别入门 MNIST手写数据集 图片以及标签的数据格式处理 准备 ...

  3. TensorFlow 入门之手写识别CNN 三

    TensorFlow 入门之手写识别CNN 三 MNIST 卷积神经网络 Fly 多层卷积网络 多层卷积网络的基本理论 构建一个多层卷积网络 权值初始化 卷积和池化 第一层卷积 第二层卷积 密集层连接 ...

  4. densenet tensorflow 中文汉字手写识别

    densenet 中文汉字手写识别,代码如下: import tensorflow as tf import os import random import math import tensorflo ...

  5. Tensorflow之基于MNIST手写识别的入门介绍

    Tensorflow是当下AI热潮下,最为受欢迎的开源框架.无论是从Github上的fork数量还是star数量,还是从支持的语音,开发资料,社区活跃度等多方面,他当之为superstar. 在前面介 ...

  6. TensorFlow MNIST(手写识别 softmax)实例运行

    TensorFlow MNIST(手写识别 softmax)实例运行 首先要有编译环境,并且已经正确的编译安装,关于环境配置参考:http://www.cnblogs.com/dyufei/p/802 ...

  7. 使用tensorflow实现mnist手写识别(单层神经网络实现)

    import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data import n ...

  8. tensorflow笔记(四)之MNIST手写识别系列一

    tensorflow笔记(四)之MNIST手写识别系列一 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7436310.html ...

  9. tensorflow笔记(五)之MNIST手写识别系列二

    tensorflow笔记(五)之MNIST手写识别系列二 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7455233.html ...

随机推荐

  1. React-Native 踩坑过程

    踩坑过程: 解决方法就是去 SDK Manager 把 23.0.1 的版本下载了 而如果报错信息中含有bintray.com.gradle.org等网址,请***,反复重试,或者去react nat ...

  2. git使用简易指南(转)

    创建新仓库 创建新文件夹,打开,然后执行 git init以创建新的 git 仓库. 检出仓库 执行如下命令以创建一个本地仓库的克隆版本:git clone /path/to/repository 如 ...

  3. [Apple开发者帐户帮助]三、创建证书(2)创建开发者ID证书

    您可以使用开发人员帐户或Xcode 创建最多五个开发者ID应用程序证书和最多五个开发人员ID安装程序证书.(要在Xcode中创建开发者ID证书,请转到Xcode帮助中的管理签名证书.) 所需角色:帐户 ...

  4. Python简介和基础入门

    1.1 Python是什么 相信混迹IT界的很多朋友都知道,Python是近年来最火的一个热点,没有之一.从性质上来讲它和我们熟知的C.java.php等没有什么本质的区别,也是一种开发语言,而且已经 ...

  5. unity3d引擎中slua的使用

    SLua是开源软件,没有反射,没有额外GC,采用静态代码生成,可以用于游戏核心逻辑,完整支持4.6+ UI系统. 1.下载安装 http://www.slua.net/ https://github. ...

  6. SQL连接其它服务器操作

    Exec sp_droplinkedsrvlogin ZYB,Null --删除映射(录与链接服务器上远程登录之间的映射) Exec sp_dropserver ZYB --删除远程服务器链接 EXE ...

  7. 读书笔记「Python编程:从入门到实践」_6.字典

    6.1 一个简单的字典 alien_0 = {'color': 'green', 'points': 5} print(alien_0['color']) print(alien_0['points' ...

  8. Arduino 控制超声波测距模块

    一.实物图 二.例子代码 用到数字2 和3 引脚,还有两个就是vcc GND两个阴脚,用模块连线比较简单

  9. REST ful

    前后端分离.面向资源.无状态: 请求包含全部信息. 什么是 REST? 下面六条准则定义了一个 REST 系统的特征: 客户-服务器(Client-Server),提供服务的服务器和使用服务的客户需要 ...

  10. JAVA 生成扫描条形码

    声明:转载为个人学习收藏,如有侵权,请及时联系本人删除,转载地址:https://www.cnblogs.com/MariaWang/p/10837641.html 条形码是一种可视化.机器可读的数据 ...