题意:对数列有三种操作:

  1. Print operation l, r. Picks should write down the value of .
  2. Modulo operation l, r, x. Picks should perform assignment a[i] = a[imod x for
    each i (l ≤ i ≤ r).
  3. Set operation k, x. Picks should set the value of a[k] to x (in
    other words perform an assignment a[k] = x).

解法:线段树更新。维护区间最大值ma和区间sum。假设訪问的x小于ma就能够忽略。否则向下更新;

代码:  
/******************************************************
* author:xiefubao
*******************************************************/
#pragma comment(linker, "/STACK:102400000,102400000")
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <queue>
#include <vector>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <stack>
#include <string.h>
//freopen ("in.txt" , "r" , stdin);
using namespace std; #define eps 1e-8
const double pi=acos(-1.0);
typedef long long LL;
const int Max=100100*2;
const int INF=1000000007;
struct node
{
int l,r;
node * left,*right;
int ma;
LL sum;
} nodes[Max];
int Mid(node* p)
{
return (p->l+p->r)/2;
}
int tot=0;
void buildtree(node* p,int left,int right)
{
p->l=left;
p->r=right;
p->ma=0;
p->sum=0;
if(left==right)
return ;
int mid=(left+right)/2;
tot++;
p->left=nodes+tot;
buildtree(p->left,left,mid);
tot++;
p->right=nodes+tot;
buildtree(p->right,mid+1,right);
}
void update(node* p,int i,int value)
{
if(p->l==i&&p->r==i)
{
p->sum=value;
p->ma=value;
return ;
}
int mid=Mid(p);
if(i<=mid)
update(p->left,i,value);
else
update(p->right,i,value);
p->sum=p->left->sum+p->right->sum;
p->ma=max(p->left->ma,p->right->ma);
}
void update2(node* p,int l,int r,int x)
{
if(p->ma<x)
return;
if(p->l==l&&p->r==r&&l==r)
{
p->sum%=x;
p->ma=p->sum;
return ;
}
int mid=Mid(p);
if(r<=mid)
update2(p->left,l,r,x);
else if(l>mid)
update2(p->right,l,r,x);
else
{
update2(p->left,l,mid,x);
update2(p->right,mid+1,r,x);
}
p->sum=p->left->sum+p->right->sum;
p->ma=max(p->left->ma,p->right->ma);
}
LL query(node* p,int l,int r)
{
if(l==p->l&&r==p->r)
{
return p->sum;
}
int mid=Mid(p);
if(r<=mid)
return query(p->left,l,r);
if(l>mid)
return query(p->right,l,r);
return query(p->left,l,mid)+query(p->right,mid+1,r);;
}
int n,m;
int main()
{
while(scanf("%d%d",&n,&m)==2)
{
tot=0;
buildtree(nodes,0,n+1);
for(int i=1; i<=n; i++)
{
int a;
scanf("%d",&a);
update(nodes,i,a);
}
while(m--)
{
int t;
scanf("%d",&t);
if(t==1)
{
int l,r;
scanf("%d%d",&l,&r);
cout<<query(nodes,l,r)<<endl;
}
else if(t==2)
{
int l,r,x;
scanf("%d%d%d",&l,&r,&x);
update2(nodes,l,r,x);
}
else if(t==3)
{
int i,x;
scanf("%d%d",&i,&x);
update(nodes,i,x);
}
}
}
return 0;
}

CF(438D) The Child and Sequence(线段树)的更多相关文章

  1. Codeforces 438D The Child and Sequence - 线段树

    At the children's day, the child came to Picks's house, and messed his house up. Picks was angry at ...

  2. CodeForces 438D The Child and Sequence (线段树 暴力)

    传送门 题目大意: 给你一个序列,要求在序列上维护三个操作: 1)区间求和 2)区间取模 3)单点修改 这里的操作二很讨厌,取模必须模到叶子节点上,否则跑出来肯定是错的.没有操作二就是线段树水题了. ...

  3. Codeforces Round #250 (Div. 1) D. The Child and Sequence 线段树 区间取摸

    D. The Child and Sequence Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest ...

  4. Codeforces Round #250 (Div. 1) D. The Child and Sequence 线段树 区间求和+点修改+区间取模

    D. The Child and Sequence   At the children's day, the child came to Picks's house, and messed his h ...

  5. cf250D. The Child and Sequence(线段树 均摊复杂度)

    题意 题目链接 单点修改,区间mod,区间和 Sol 如果x > mod ,那么 x % mod < x / 2 证明: 即得易见平凡, 仿照上例显然, 留作习题答案略, 读者自证不难. ...

  6. Codeforces Round #250 (Div. 1) D. The Child and Sequence (线段树)

    题目链接:http://codeforces.com/problemset/problem/438/D 给你n个数,m个操作,1操作是查询l到r之间的和,2操作是将l到r之间大于等于x的数xor于x, ...

  7. CF438D The Child and Sequence 线段树

    给定数列,区间查询和,区间取模,单点修改. n,m小于10^5 ...当区间最值小于模数时,就直接返回就好啦~ #include<cstdio> #include<iostream& ...

  8. 2016暑假多校联合---Rikka with Sequence (线段树)

    2016暑假多校联合---Rikka with Sequence (线段树) Problem Description As we know, Rikka is poor at math. Yuta i ...

  9. 2018.07.23 codeforces 438D. The Child and Sequence(线段树)

    传送门 线段树维护区间取模,单点修改,区间求和. 这题老套路了,对一个数来说,每次取模至少让它减少一半,这样每次单点修改对时间复杂度的贡献就是一个log" role="presen ...

随机推荐

  1. 建筑建模学习笔记2——3DMax房屋框架建模

    以下这幅图是用3DMax做出的大体的框架 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I ...

  2. HD-ACM算法专攻系列(3)——Least Common Multiple

    题目描述: 源码: /**/ #include"iostream" using namespace std; int MinComMultiple(int n, int m) { ...

  3. <Sicily>Inversion Number(线段树求逆序数)

    一.题目描述 There is a permutation P with n integers from 1 to n. You have to calculate its inversion num ...

  4. NodeJS学习笔记 (23)模块机制-module

    https://github.com/chyingp/nodejs-learning-guide

  5. python 异步IO

    参考链接:https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000/00143208573 ...

  6. ArcGIS api for javascript——渲染-计算相等间隔分级

    描述 本例展示了如何配置分级渲染使用一个相等间隔分类.在这个分类类型中,断点被设置为相等的距离. 可以手工添加相等距离的断点:然而,如果数据被修改了,那些断点就会是不合理的.本例自动地计算断点,因此相 ...

  7. Using a Plugin

    创建hello.world <?xml version="1.0"?> <sdf version="1.4"> <world na ...

  8. 【LeetCode-面试算法经典-Java实现】【063-Unique Paths II(唯一路径问题II)】

    [063-Unique Paths II(唯一路径问题II)] [LeetCode-面试算法经典-Java实现][全部题目文件夹索引] 原题 Follow up for "Unique Pa ...

  9. wxWidgets笔记_1_linux环境下wxwidgets的安装与配置

    linux下wxwidgets环境的安装与配置 一.建立目标文件夹(自己定义) mkdir /opt/SCOTT 二.安装wxWidgets 1.wxWidgets版本号能够选用wxGTK-2.8.1 ...

  10. sass02

    新建一个文件夹 1 cd 进入文件夹 ,cd E:\360data\重要数据\桌面\sass, 2 compass creat hello:当前目录创建sass工程, 3 sass文件夹放置sass文 ...