【Computer Vision】图像单应性变换/投影/仿射/透视
一、基础概念
1. projective transformation = homography = collineation.
2. 齐次坐标:使用N+1维坐标来表示N维坐标,例如在2D笛卡尔坐标系中加上额外变量w来形成2D齐次坐标系$(x,y) \Rightarrow (x,y,w)$
齐次坐标具有规模不变性,同一点可以被无数个齐次坐标表达.$(x,y,1) \Rightarrow (ax,ay,a)$ 齐次坐标转化为笛卡尔坐标可以通过同除最后一项得到.
3. 单应性变换是对齐次坐标下点的线性变换,可以通过矩阵运算来表达$ x^{'}= Hx$
H为非奇异矩阵.
二、基础变换
刚体变换(rigid transformation): 旋转和平移变换/rotation,translation, 3个自由度,点与点之间的距离不变
$$ x' = \begin{pmatrix} R&t \\ 0^T&1\end{pmatrix}x $$
R为2*2旋转矩阵,t为2维列向量,0^T为0的二维行向量
相似变换(similarity transformation): 增加了缩放尺度, 四个自由度,点与点之间的距离比不变
$$x' = \begin{pmatrix} sR & t \\ 0^T & 1 \end{pmatrix}x$$
s为缩放尺度
仿射变换(affine transformation): 仿射变换和相似变换近似,不同之处在于相似变换具有单一旋转因子和单一缩放因子,仿射变换具有两个旋转因子和两个缩放因子,因此具有6个自由度. 不具有保角性和保持距离比的性质,但是原图平行线变换后仍然是平行线.
$$x' = \begin{pmatrix}A&t \\ 0^T&1\end{pmatrix}x$$
A为2*2的非奇异矩阵,可被分解为如下: $A = R(\theta)R(-\phi)DR(\phi)$
其中$R(\theta) R(\phi)$ 为旋转矩阵,D为对角阵$ D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} $
$\lambda_1 和 \lambda_2$可以看做两个方向的缩放比.
投影变换(projective transformation): 也叫作单应性变换。投影变换是齐次坐标下非奇异的线性变换。然而在非齐次坐标系下却是非线性的,这说明齐次坐标的发明是很有价值的。投影变换比仿射变换多2个自由度,具有8个自由度。上面提到的仿射变换具有的“不变”性质,在投影变换中已不复存在了。尽管如此,它还是有一项不变性,那就是在原图中保持共线的3个点,变换后仍旧共线。投影变换表示如下:
$$x' = \begin{pmatrix}A&t \\ V^T&v\end{pmatrix}x$$
其中$V = (v_1,v_2)^T$
透视变换: 透视变换将图像投影到一个新的视平面,是二维到三维再到另一个二维(x', y')空间的映射。
透视变换前两行和仿射变换相同,第三行用于实现透视变换。透视变换前后,原来共线的三个点,变换之后仍然共线。
以上公式设变换之前的点是z值为1的点,它三维平面上的值是x,y,1,在二维平面上的投影是x,y,通过矩阵变换成三维中的点X,Y,Z,再通过除以三维中Z轴的值,转换成二维中的点x’,y’.
从以上公式可知,仿射变换是透视变换的一种特殊情况.它把二维转到三维,变换后,再转映射回之前的二维空间(而不是另一个二维空间)
三、Python实现
python版本:2.7
依赖包:scipy,numpy,pylab,PIL
1. 使用仿射矩阵进行image warping: 图像扭曲
图片:trees_001.jpg
from scipy import ndimage
from numpy import *
from PIL import Image
from pylab import *
im = array(Image.open('trees_001.jpg').convert('L'))
H = array([[1.4,0.05,-100],[0.05,1.5,-100],[0,0,1]])
#im2 = ndimage.affine_transform(im,H[:2,:2],(H[0,2],H[1,2]))
im2 = ndimage.affine_transform(im,H[:2,:2],(H[0,2],H[1,2]))
figure()
gray()
imshow(im2)
show()
结果:
【Computer Vision】图像单应性变换/投影/仿射/透视的更多相关文章
- 单应性(homography)变换的推导
矩阵的一个重要作用是将空间中的点变换到另一个空间中.这个作用在国内的<线性代数>教学中基本没有介绍.要能形像地理解这一作用,比较直观的方法就是图像变换,图像变换的方法很多,单应性变换是其中 ...
- OpenCV仿射变换+投射变换+单应性矩阵
本来想用单应性求解小规模运动的物体的位移,但是后来发现即使是很微小的位移也会带来超级大的误差甚至错误求解,看起来这个方法各种行不通,还是要匹配知道深度了以后才能从三维仿射变换来入手了,纠结~ esti ...
- 机器学习进阶-案例实战-图像全景拼接-图像全景拼接(RANSCA) 1.sift.detectAndComputer(获得sift图像关键点) 2.cv2.findHomography(计算单应性矩阵H) 3.cv2.warpPerspective(获得单应性变化后的图像) 4.cv2.line(对关键点位置进行连线画图)
1. sift.detectAndComputer(gray, None) # 计算出图像的关键点和sift特征向量 参数说明:gray表示输入的图片 2.cv2.findHomography(kp ...
- OpenCV 之 平面单应性
上篇 OpenCV 之 图象几何变换 介绍了等距.相似和仿射变换,本篇侧重投影变换的平面单应性.OpenCV相关函数.应用实例等. 1 投影变换 1.1 平面单应性 投影变换 (Projectiv ...
- python opencv3 FLANN单应性匹配
git:https://github.com/linyi0604/Computer-Vision 匹配准确率非常高. 单应性指的是图像在投影发生了 畸变后仍然能够有较高的检测和匹配准确率 # codi ...
- 相机标定 和 单应性矩阵H
求解相机参数的过程就称之为相机标定. 1.相机模型中的四个平面坐标系: 1.1图像像素坐标系(u,v) 以像素为单位,是以图像的左上方为原点的图像坐标系: 1.2图像物理坐标系(也叫像平面坐标系)(x ...
- opencv 仿射变换 投射变换, 单应性矩阵
仿射 estimateRigidTransform():计算多个二维点对或者图像之间的最优仿射变换矩阵 (2行x3列),H可以是部分自由度,比如各向一致的切变. getAffineTransform( ...
- OpenCV-Python 特征匹配 + 单应性查找对象 | 四十五
目标 在本章节中,我们将把calib3d模块中的特征匹配和findHomography混合在一起,以在复杂图像中找到已知对象. 基础 那么我们在上一环节上做了什么?我们使用了queryImage,找到 ...
- 相机标定:PNP基于单应面解决多点透视问题
利用二维视野内的图像,求出三维图像在场景中的位姿,这是一个三维透视投影的反向求解问题.常用方法是PNP方法,需要已知三维点集的原始模型. 本文做了大量修改,如有不适,请移步原文: ...
随机推荐
- 关于<marquee>、<form>、input中的<text>、<password>、<hidden>、<wenbenkuang>、<reset>、<image>、<submit>、<radio>、<checkbox>以及<select><iframe src>的用法
<html> <head> <meta charset="UTF-8"> <title></ ...
- K3内部表数据名称
在后台数据库ICClassType表中,字段FID<0的是老单,FID>0的是新单.----------------系统设置------------------------FStatus: ...
- [读书笔记] R语言实战 (十四) 主成分和因子分析
主成分分析和探索性因子分析是用来探索和简化多变量复杂关系的常用方法,能解决信息过度复杂的多变量数据问题. 主成分分析PCA:一种数据降维技巧,将大量相关变量转化为一组很少的不相关变量,这些无关变量称为 ...
- Unity 摄像头竖屏预览显示的问题
Unity可以通过WebCamTexture打开摄像头,通过 cameraRawImage.texture = camTexture; 将贴图给RawImage,但是WebCamTexture只能设置 ...
- 模块打包机--webpack--基础使用
什么是webpack? 作用有哪些? WebPack可以看做是模块打包机:它做的事情是,分析你的项目结构,找到JavaScript模块以及其它的一些浏览器不能直接运行的拓展语言(Scss,Type ...
- 5kcrm增加权限管理中的模块(签到统计)
1 首先在model表增加模块名称 2 在controll里增加方法 3 在授权的html增加表单
- java中 flush()方法的作用
flush() 是清空,而不是刷新啊.一般主要用在IO中,即清空缓冲区数据,就是说你用读写流的时候,其实数据是先被读到了内存中,然后用数据写到文件中,当你数据读完的时候不代表你的数据已经写完了,因为还 ...
- 高级函数-case
case函数 (适合区间,>,<判断) case when 判断表达式 then when 判断表达式 then ..... end s ...
- angular-HTML DOM
ng-disabled用法 <div ng-app="" ng-init="mySwitch=true"> <p> <button ...
- POJ 3696
这里面的一个转换的小技巧很重要,把888...8转换成(10^x-1)/9*8.神来之笔,佩服. 这样有(10^x-1)/9*8=L*p得10^x-1=L*p*9/8,设m=9*L/gcd(L,8). ...