hdu 4037 Development Value(线段树维护数学公式)
Development Value
Time Limit: 5000/3000 MS (Java/Others) Memory Limit: 65768/65768 K (Java/Others)
Total Submission(s): 609 Accepted Submission(s): 118

As a crazy fan of SC2, Ahua (flower fairy) play it day and night. Recently, he found that the most important part of being a top player of SC2 is economic development, which means you should get as much mine as possible by training SCVs (space construction
vehicle) to collect mine. Train a SCV at ith second costs Ci units of mine. After training, this SCV can collect Di units of mine each second. Training a SCV needs one second of time.
Based on that, he composes a formula to evaluate the development in a time span from xth second to yth second. Assume at xth second, Ahua has no SCV and mine. He trains one SCV at each second during xth second and yth second (the mount of mine can be negative,
so that he always can train SCV). Each SCV will collect some amount of mines for Ahua in each second after it was trained. At ith second Ahua has Mi units of mine in total. The development value is defined as sum(Mi) (x ≤ i ≤ y). Now he asks you to help him
calculate the development value. To make it more interesting, Ahua can apply following operations:
Cost x y z: the cost of training a SCV between xth second to yth second will increase by z units of mine. i.e. Ci for x ≤ i ≤ y will increase by z.
Collect x y z: each SCV trained between xth second and yth second can collect z more mines every second after it has been trained. i.e. Di for x ≤ i ≤ y will increase by z.
Query x y: output the development value between xth second and yth second.
For each test case, the first line is an integer N (1 ≤ N ≤ 100000), means the maximum time you should deal with.
Following N lines, each contain two integers Ci and Di (0 ≤ Ci, Di ≤ 100000), the cost and collect speed of SCV training in ith second initially as described above.
The next line is an integer Q (1 ≤ Q ≤ 10000), the number of operations you should deal with. Then Q lines followed, each line will be “Cost x y z”, "Collect x y z” or “Query x y”.
1 ≤ x ≤ y ≤ N, 0 ≤ z ≤ 100000
1
5
1 3
2 3
3 1
2 2
3 3
5
Query 1 3
Cost 2 2 1
Query 1 3
Collect 1 1 5
Query 1 3
Case 1:
2
0
15
题意:
有一个游戏。里面要造矿兵。在第i秒造矿兵须要花费c[i]。然后之后的时间每秒该矿兵都会採d[i]的矿。然后询问。从x秒到y秒。
每秒造一个矿兵.(在x秒的时候矿兵和矿都为0.可是矿能够为负数)。然后定义了一个mi。
表示第i秒时的总矿数。然后要你输出.Σmi(x<=i<=y)。
思路:
先推公式。
1,考虑花费
时刻j 从x时刻到j时刻造农民的总花费
x C(x)
x+1 C(x)+C(x+1)
x+2 C(x)+C(x+1)+C(x+2)
......
y C(x)+C(x+1)+...+C(y)
对第二栏求和。每一列是C(i)*(y-i+1),再对这个从x到y求和。得sigma(C(i)*(y+1-i))
分成两项(y+1)*sigma(C(i))-sigma(C(i)*i)
2,考虑採矿
对于i时刻被造出的农民。到j时刻总共採的矿数是D(i)*(j-i),对这个从x到j求和就是j时刻之前造的农民到j时刻为止总共採的矿数,即sigma(D(i)*(j-i))(对i从x到j求和)。再对j从x到y求和就是答案。
可是这个形式的求和式不适合用线段树维护。做些变形:
时刻j sigma(D(i)*(j-i))
x D(x)*0
x+1 D(x)*1+D(x+1)*0
x+2 D(x)*2+D(x+1)*1+D(x+2)*0
......
y D(x)*(y-x)+D(x+1)*(y-x-1)+......+D(y-1)*1+D(y)*0
对第二栏求和,每列是D(i)*(y-i)*(y-i+1)/2。再对这个从x到y求和。sigma(D(i)*(y-i)*(y-i+1)/2).
把和式拆成几项方便维护:1/2*( y*(y+1)sigma(D(i)) - (2*y+1)sigma(D(i)*i) + sigma(D(i)*i^2))
然后最后的答案就是採矿-花费。
然后仅仅须要用一颗线段树来维护。
sigma(ci),sigma(i*ci),sigma(di),sigma(i*di),sigma(i*i*di).
然后按一般的更新查询就完了。
对于除二取模的问题。
(1)模数乘2。全部中间过程直接取模。最后得数/2
(2)直接取模。最后答案是ret,假设ret是偶数,答案是ret/2,假设是奇数,答案是(ret + mod) / 2
具体见代码:
#include<algorithm>
#include<iostream>
#include<string.h>
#include<stdio.h>
using namespace std;
const int INF=0x3f3f3f3f;
const int maxn=100010;
typedef long long ll;
const ll mod=20110911*2;
#define lson L,mid,ls
#define rson mid+1,R,rs
ll sm[maxn],ss[maxn],sc[maxn<<2],sd[maxn<<2],siid[maxn<<2];
ll sic[maxn<<2],sid[maxn<<2],ac[maxn<<2],ad[maxn<<2];
ll asc,aic,asd,aid,aiid;
void addc(int L,int R,int rt,ll d)
{
ac[rt]=(ac[rt]+d)%mod;
sc[rt]=(sc[rt]+(R-L+1)*d)%mod;
sic[rt]=(sic[rt]+(sm[R]-sm[L-1])*d)%mod;
}
void addd(int L,int R,int rt,ll d)
{
ad[rt]=(ad[rt]+d)%mod;
sd[rt]=(sd[rt]+(R-L+1)*d)%mod;
sid[rt]=(sid[rt]+(sm[R]-sm[L-1])*d)%mod;
siid[rt]=(siid[rt]+(ss[R]-ss[L-1])*d)%mod;
}
void PushDown(int L,int R,int rt)
{
int ls=rt<<1,rs=ls|1,mid=(L+R)>>1;
if(ad[rt])
addd(lson,ad[rt]),addd(rson,ad[rt]),ad[rt]=0;
if(ac[rt])
addc(lson,ac[rt]),addc(rson,ac[rt]),ac[rt]=0;
}
void PushUp(int rt)
{
int ls=rt<<1,rs=ls|1;
sc[rt]=(sc[ls]+sc[rs])%mod;
sic[rt]=(sic[ls]+sic[rs])%mod;
sd[rt]=(sd[ls]+sd[rs])%mod;
sid[rt]=(sid[ls]+sid[rs])%mod;
siid[rt]=(siid[ls]+siid[rs])%mod;
}
void build(int L,int R,int rt)
{
ac[rt]=ad[rt]=0;
if(L==R)
{
scanf("%I64d%I64d",&sc[rt],&sd[rt]);
sic[rt]=(L*sc[rt])%mod;
sid[rt]=(L*sd[rt])%mod;
siid[rt]=(sid[rt]*L)%mod;
return;
}
int ls=rt<<1,rs=ls|1,mid=(L+R)>>1;
build(lson);
build(rson);
PushUp(rt);
}
void update(int L,int R,int rt,int l,int r,ll d,int op)
{
if(l<=L&&R<=r)
{
if(op)
addd(L,R,rt,d);
else
addc(L,R,rt,d);
return;
}
int ls=rt<<1,rs=ls|1,mid=(L+R)>>1;
PushDown(L,R,rt);
if(l<=mid)
update(lson,l,r,d,op);
if(r>mid)
update(rson,l,r,d,op);
PushUp(rt);
//printf("%d->%d sc")
}
void qu(int L,int R,int rt,int l,int r)
{
if(l<=L&&R<=r)
{
asc=(asc+sc[rt])%mod;
aic=(aic+sic[rt])%mod;
asd=(asd+sd[rt])%mod;
aid=(aid+sid[rt])%mod;
aiid=(aiid+siid[rt])%mod;
return;
}
int ls=rt<<1,rs=ls|1,mid=(L+R)>>1;
PushDown(L,R,rt);
if(l<=mid)
qu(lson,l,r);
if(r>mid)
qu(rson,l,r);
PushUp(rt);
}
int main()
{
int i,t,n,q,x,y,z,cas=1;
char cmd[20];
for(i=1;i<maxn;i++)
{
sm[i]=(sm[i-1]+i)%mod;
ss[i]=(ss[i-1]+(ll)i*i)%mod;
}
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
build(1,n,1);
scanf("%d",&q);
printf("Case %d:\n",cas++);
while(q--)
{
asc=aic=asd=aid=aiid=0;
scanf("%s%d%d",cmd,&x,&y);
if(cmd[0]!='Q')
scanf("%d",&z);
if(cmd[2]=='s')
update(1,n,1,x,y,z,0);
else if(cmd[2]=='l')
update(1,n,1,x,y,z,1);
else
{
qu(1,n,1,x,y);
ll ans=((ll)y*(y+1)*asd-(2*y+1)*aid+aiid)%mod;
ans-=2*((y+1)*asc-aic);
ans%=mod;
ans=(ans+mod)%mod;
//printf("asc %I64d aic %I64d asd %I64d aid %I64d aiid %I64d\n",asc,aic,asd,aid,aiid);
printf("%I64d\n",ans/2);
}
}
}
return 0;
}
hdu 4037 Development Value(线段树维护数学公式)的更多相关文章
- HDU 6155 Subsequence Count 线段树维护矩阵
Subsequence Count Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 256000/256000 K (Java/Oth ...
- HDU 2795 Billboard 【线段树维护区间最大值&&查询变形】
任意门:http://acm.hdu.edu.cn/showproblem.php?pid=2795 Billboard Time Limit: 20000/8000 MS (Java/Others) ...
- hdu 5068 线段树维护矩阵乘积
http://acm.hdu.edu.cn/showproblem.php?pid=5068 题意给的略不清晰 m个询问:从i层去j层的方法数(求连段乘积)或者修改从x层y门和x+1层z门的状态反转( ...
- HDU.5692 Snacks ( DFS序 线段树维护最大值 )
HDU.5692 Snacks ( DFS序 线段树维护最大值 ) 题意分析 给出一颗树,节点标号为0-n,每个节点有一定权值,并且规定0号为根节点.有两种操作:操作一为询问,给出一个节点x,求从0号 ...
- HDU 6406 Taotao Picks Apples 线段树维护
题意:给个T,T组数据: 每组给个n,m:n个数,m个操作: (对序列的操作是,一开始假设你手上东西是-INF,到i=1时拿起1,之后遍历,遇到比手头上的数量大的数时替换(拿到手的算拿走),问最后拿走 ...
- HDU 5861 Road (线段树)
Road 题目链接: http://acm.split.hdu.edu.cn/showproblem.php?pid=5861 Description There are n villages alo ...
- HDU 3265 Posters(线段树)
HDU 3265 Posters pid=3265" target="_blank" style="">题目链接 题意:给定一些矩形海报.中间有 ...
- hdu 3954 Level up(线段树)
题目链接:hdu 3954 Level up 题目大意:N个英雄,M个等级,初始等级为1,给定每一个等级须要的经验值,Q次操作,操作分两种,W l r x:表示l~r之间的英雄每一个人杀了x个怪物:Q ...
- HDU 6047 Maximum Sequence(线段树)
题目网址:http://acm.hdu.edu.cn/showproblem.php?pid=6047 题目: Maximum Sequence Time Limit: 4000/2000 MS (J ...
随机推荐
- php中一个经典的!==的用法
php中一个经典的!==的用法 <?php $str = 'Every time you bleed for reaching greatness.'; $cha = 'E'; if(strpo ...
- layui新手使用
1,首先最重要的是引入官方的layui.js layui.css文件 2,在自己的项目中新建一个目录 再在该目录下建一个js文件,js中写入 layui.define(['layer', 'form ...
- 利用JavaScript的if语句判断元素显示隐藏
<html> <head> <meta charset="utf-8"> <title>无标题文档</title> &l ...
- Retrofit进行post提交json数据
1:先看一看xutils3的提交代码 String account = editText1.getText().toString(); String password = editText2.getT ...
- hdu1507 最大匹配
题目大意: 在 n*m在矩阵中,有一些点被标记为黑色,问可以多少对相邻的没有重复的白色块. 思路: 看上去与二分匹配毫无关系.但是没有其他好的解法,转化为二分匹配是正解.二分匹配的条件是{X,Y|E} ...
- H5 微信公众号 监听返回事件
/*-----监听返回事件-----*/ function pushHistory(returnUrl,currentUrl,currentTitle) { window.addEventListen ...
- go基础笔记
1.slice:作为参数传递时,传递的是地址,当append时,在新的内存地址分配数据,但是没有返回给原的slice,只能通过返回值的方式赋值给slice2.func(a []int):传递,可以3. ...
- Nagios Windows客户端NSClient++ 0.4.x安装配置
NSClient++ 0.3.x和NSClient++ 0.4.x的配置完全不一样,官方的文档也没有全部更新.我记录下自己的一些操作. 一.下载安装NSClient++ 1.到http://nsc ...
- 关于Java学习
缘由 其实写东西的缘由都很简单,不外乎要总结记录,这里,是一种启明灯一样的东西. 虽然说是半路出家,但码代码也有不少时间了,学习编程也有记录可寻了.. 但是,但是,但是,到了工作中,虽然经前辈指点,仍 ...
- App测试- adb monkey测试
一. 安装和配置SDK 1. 下载Android SDK并解压.如下图:(如果不存在tool和platform_tool,请点击SDK Manager在线下载和更新) 2.下载完成后,配置SDK环境变 ...