官网的mnist和cifar10数据之后,笔者尝试着制作自己的数据集,并保存,读入,显示。 TensorFlow可以支持cifar10的数据格式, 也提供了标准的TFRecord 格式,而关于 tensorflow 读取数据, 官网提供了3中方法 
1 Feeding: 在tensorflow程序运行的每一步, 用Python代码在线提供数据 
2 Reader : 在一个计算图(tf.graph)的开始前,将文件读入到流(queue)中 
3 在声明tf.variable变量或numpy数组时保存数据。受限于内存大小,适用于数据较小的情况

在本文,主要介绍第二种方法,利用tf.record标准接口来读入文件

准备图片数据

笔者找了2类狗的图片, 哈士奇和吉娃娃, 全部 resize成128 * 128大小 
如下图, 保存地址为/home/molys/Python/data/dog 
 
每类中有10张图片 
 

现在利用这2 类 20张图片制作TFRecord文件

制作TFRECORD文件

1 先聊一下tfrecord, 这是一种将图像数据和标签放在一起的二进制文件,能更好的利用内存,在tensorflow中快速的复制,移动,读取,存储 等等..

这里注意,tfrecord会根据你选择输入文件的类,自动给每一类打上同样的标签 
如在本例中,只有0,1 两类

2 先上“制作TFRecord文件”的代码,注释附详解


import os
import tensorflow as tf
from PIL import Image #注意Image,后面会用到
import matplotlib.pyplot as plt
import numpy as np cwd='/home/molys/Python/data/'
classes={'husky','chihuahua'} #人为 设定 2 类
writer= tf.python_io.TFRecordWriter("dog_train.tfrecords") #要生成的文件 for index,name in enumerate(classes):
class_path=cwd+name+'/'
for img_name in os.listdir(class_path):
img_path=class_path+img_name #每一个图片的地址 img=Image.open(img_path)
img= img.resize((128,128))
img_raw=img.tobytes()#将图片转化为二进制格式
example = tf.train.Example(features=tf.train.Features(feature={
"label": tf.train.Feature(int64_list=tf.train.Int64List(value=[index])),
'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw]))
})) #example对象对label和image数据进行封装
writer.write(example.SerializeToString()) #序列化为字符串 writer.close()

运行完这段代码后,会生成dog_train.tfrecords 文件,如下图 

tf.train.Example 协议内存块包含了Features字段,通过feature将图片的二进制数据和label进行统一封装, 然后将example协议内存块转化为字符串, tf.python_io.TFRecordWriter 写入到TFRecords文件中。

读取TFRECORD文件

在制作完tfrecord文件后, 将该文件读入到数据流中。 
代码如下


def read_and_decode(filename): # 读入dog_train.tfrecords
filename_queue = tf.train.string_input_producer([filename])#生成一个queue队列 reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)#返回文件名和文件
features = tf.parse_single_example(serialized_example,
features={
'label': tf.FixedLenFeature([], tf.int64),
'img_raw' : tf.FixedLenFeature([], tf.string),
})#将image数据和label取出来 img = tf.decode_raw(features['img_raw'], tf.uint8)
img = tf.reshape(img, [128, 128, 3]) #reshape为128*128的3通道图片
img = tf.cast(img, tf.float32) * (1. / 255) - 0.5 #在流中抛出img张量
label = tf.cast(features['label'], tf.int32) #在流中抛出label张量
return img, label

注意,feature的属性“label”和“img_raw”名称要和制作时统一 ,返回的img数据和label数据一一对应。返回的img和label是2个 tf 张量,print出来 如下图 

显示tfrecord格式的图片

有些时候我们希望检查分类是否有误,或者在之后的网络训练过程中可以监视,输出图片,来观察分类等操作的结果,那么我们就可以session回话中,将tfrecord的图片从流中读取出来,再保存。 紧跟着一开始的代码写:


filename_queue = tf.train.string_input_producer(["dog_train.tfrecords"]) #读入流中
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue) #返回文件名和文件
features = tf.parse_single_example(serialized_example,
features={
'label': tf.FixedLenFeature([], tf.int64),
'img_raw' : tf.FixedLenFeature([], tf.string),
}) #取出包含image和label的feature对象
image = tf.decode_raw(features['img_raw'], tf.uint8)
image = tf.reshape(image, [128, 128, 3])
label = tf.cast(features['label'], tf.int32)
with tf.Session() as sess: #开始一个会话
init_op = tf.initialize_all_variables()
sess.run(init_op)
coord=tf.train.Coordinator()
threads= tf.train.start_queue_runners(coord=coord)
for i in range(20):
example, l = sess.run([image,label])#在会话中取出image和label
img=Image.fromarray(example, 'RGB')#这里Image是之前提到的
img.save(cwd+str(i)+'_''Label_'+str(l)+'.jpg')#存下图片
print(example, l)
coord.request_stop()
coord.join(threads)

代码运行完后, 从tfrecord中取出的文件被保存了。如下图: 

在这里我们可以看到,图片文件名的第一个数字表示在流中的顺序(笔者这里没有用shuffle), 第二个数字则是 每个图片的label,吉娃娃都为0,哈士奇都为1。 由此可见,我们一开始制作tfrecord文件时,图片分类正确。

TensorFlow 制作自己的TFRecord数据集的更多相关文章

  1. 深度学习原理与框架-Tfrecord数据集的制作 1.tf.train.Examples(数据转换为二进制) 3.tf.image.encode_jpeg(解码图片加码成jpeg) 4.tf.train.Coordinator(构建多线程通道) 5.threading.Thread(建立单线程) 6.tf.python_io.TFR(TFR读入器)

    1. 配套使用: tf.train.Examples将数据转换为二进制,提升IO效率和方便管理 对于int类型 : tf.train.Examples(features=tf.train.Featur ...

  2. 深度学习原理与框架-Tfrecord数据集的读取与训练(代码) 1.tf.train.batch(获取batch图片) 2.tf.image.resize_image_with_crop_or_pad(图片压缩) 3.tf.train.per_image_stand..(图片标准化) 4.tf.train.string_input_producer(字符串入队列) 5.tf.TFRecord(读

    1.tf.train.batch(image, batch_size=batch_size, num_threads=1) # 获取一个batch的数据 参数说明:image表示输入图片,batch_ ...

  3. Tensorflow创建和读取17flowers数据集

    http://blog.csdn.net/sinat_16823063/article/details/53946549 Tensorflow创建和读取17flowers数据集 标签: tensorf ...

  4. 在C#下使用TensorFlow.NET训练自己的数据集

    在C#下使用TensorFlow.NET训练自己的数据集 今天,我结合代码来详细介绍如何使用 SciSharp STACK 的 TensorFlow.NET 来训练CNN模型,该模型主要实现 图像的分 ...

  5. TensorFlow从0到1之TensorFlow逻辑回归处理MNIST数据集(17)

    本节基于回归学习对 MNIST 数据集进行处理,但将添加一些 TensorBoard 总结以便更好地理解 MNIST 数据集. MNIST由https://www.tensorflow.org/get ...

  6. 将本地图片数据制作成内存对象数据集|tensorflow|手写数字制作成内存对象数据集|tf队列|线程

      样本说明: tensorflow经典实例之手写数字识别.MNIST数据集. 数据集dir名称 每个文件夹代表一个标签label,每个label中有820个手写数字的图片 标签label为0的文件夹 ...

  7. tensorflow制作tfrecord格式数据

    tf.Example msg tensorflow提供了一种统一的格式.tfrecord来存储图像数据.用的是自家的google protobuf.就是把图像数据序列化成自定义格式的二进制数据. To ...

  8. tensorflow 使用tfrecords创建自己数据集

    直接采用矩阵方式建立数据集见:https://www.cnblogs.com/WSX1994/p/10128338.html 制作自己的数据集(使用tfrecords) 为什么采用这个格式? TFRe ...

  9. 制作voc2007数据格式的数据集

    最近按照博主分享的流程操作,将自己遇到的难题记录下来,附上原博文链接:https://blog.csdn.net/jx232515/article/details/78680724 使用SSD训练自己 ...

随机推荐

  1. 2015年北京大学软件project学科优秀大学生夏令营上机考试---C:单词翻转面试题

    题目描写叙述:翻转句子中单词的顺序.但单词内字符的顺序不变.句子中单词以空格符隔开. 为简单起见,标点符号和普通字母一样处理.如:"I am a student."翻转成" ...

  2. springboot集成grpc

    gRPC 简介 gRPC 是一个现代开源的高性能 RPC 框架,可以在任何环境下运行.它可以有效地将数据中心内和跨数据中心的服务与可插拔支持进行负载均衡.跟踪.健康检查和认证.它也适用于分布式计算,将 ...

  3. elasticsearch插件开发

    检索引擎Elasticsearch支持插件模式.有些时候你可能须要安装一些插件.甚至自己开发插件,这里就提供一个開始ES插件开发演示样例,ES版本号为1.5.2. 一.插件类继承自org.elasti ...

  4. Qt中暂停线程的执行(主线程和工作线程共用一把锁,一旦主线程将它锁上,工作线程就无法运行了,这也是一个办法)

    在线程中定义一个信号量: QMutex pause; 把run()函数中循环执行的部分用信号量pause锁住:   void run()   {   while(1)   {   pause.lock ...

  5. 0x58 数据结构优化DP

    补写一下 poj3171 设f[i]表示覆盖L~i的最小花费,把区间按左端点排序,枚举区间,f[a[i].r]=min{f[a[i].l~(a[top].r-1)]}+a[i].c (当然还要和原值比 ...

  6. Node.js:RESTful API

    ylbtech-Node.js:RESTful API 1.返回顶部 1. Node.js RESTful API 什么是 REST? REST即表述性状态传递(英文:Representational ...

  7. Node.js:事件循环

    ylbtech-Node.js:事件循环 1.返回顶部 1. Node.js 事件循环 Node.js 是单进程单线程应用程序,但是通过事件和回调支持并发,所以性能非常高. Node.js 的每一个 ...

  8. [ASP.Net] 转 > ASP.NET MVC 大牛之路

    URL: http://www.cnblogs.com/willick/ [ASP.NET MVC 大牛之路]01 - 开篇 [ASP.NET MVC 大牛之路]02 - C#高级知识点概要(1) - ...

  9. 【BZOJ3926】【ZJOI2015】诸神眷顾的幻想乡 广义后缀自动机

    题目: 题目在这里 思路&做法: 参考的题解 既然只有\(20\)个叶子节点, 那么可以从每个叶子节点往上建一颗\(trie\)树, 然后合并成一棵大的\(trie\)树, 然后构建广义后缀自 ...

  10. anaconda 使用 及 tensorflow-gpu 安装

    Anaconda简易使用 创建新环境 conda create -n rcnn python=3.6 删除环境 conda remove -n rcnn --all 进入环境 conda activa ...