二叉查找树BST 就是二叉搜索树 二叉排序树。
就是满足 左儿子<父节点<右儿子 的一颗树,插入和查询复杂度最好情况都是logN的,写起来很简单。
 
根据BST的性质可以很好的解决这些东西
1.查询值
int Search(int k,int x)
{
if(x<a[k].key && a[k].l) Search(a[k].l,x);
else if(x>a[k].key && a[k].r) Search(a[k].r,x);
else return k;
}

2.查询最小值最大值

int getmin(int k)
{
if(!a[k].l)return k;
return getmin(a[k].l);
}
int getmax(int k)
{
if(!a[k].r)return k;
return getmax(a[k].r);
}

3.输出排序(其实就是中根遍历)

void Leftorder(int k)
{
if(a[k].l)Leftorder(a[k].l);
printf("%d ",a[k].key);
if(a[k].r)Leftorder(a[k].r);
}
接下来说一下BST的操作
1.插入
这个没什么好说的,就是小的插右边 大的插左边 递归下去就行了。

void InsertNode(int k,int x)
{
if(tree_size==)root=++tree_size,a[root].key=x;
else if(x<=a[k].key){
if(a[k].l)InsertNode(a[k].l,x);
else{
tree_size++;
a[tree_size].key=x;
a[tree_size].p=k;
a[k].l=tree_size;
}
}
else if(x>a[k].key){
if(a[k].r)InsertNode(a[k].r,x);
else{
tree_size++;
a[tree_size].key=x;
a[tree_size].p=k;
a[k].r=tree_size;
}
}
}

2.删除

对于删除点的操作,分下面三种情况:

  (1)删的这个点没有左儿子  ->   让它的右子树代替它

  (2)删的这个点没有右儿子  ->   让它的左子树代替它

  (3)删的这个点子孙齐全   ->   在它的的左子树里选一个最小的(或者在右子树里找一个最大的)放在它的位置,好理解吧

}
void Treeplant(int k,int x,int y)          //用子树y代替x
{
if(x==root)root=y;
else if(x==a[a[x].p].l)a[a[x].p].l=y;
else a[a[x].p].r=y;
if(a[y].key)a[y].p=a[x].p;
}
void DeleteNode(int k,int x)
{
if(!a[x].l)Treeplant(k,x,a[x].r);        //情况一
else if(!a[x].r)Treeplant(k,x,a[x].l);     //情况二
else{                         //情况三
int y=getmin(a[x].r);
if(a[y].p!=x)
{
Treeplant(,y,a[y].r);
a[y].r=a[x].r,a[a[y].r].p=y;
}
Treeplant(,x,y);
a[y].l=a[x].l,a[a[y].l].p=y;
}
}

这点东西都跟算法导论学的 , 很好理解 ,就扯这么多了 ,立个flag明天写Splay

二叉查找树BST 模板的更多相关文章

  1. 二叉查找树(BST)

    二叉查找树(BST):使用中序遍历可以得到一个有序的序列

  2. 查找系列合集-二叉查找树BST

    一. 二叉树 1. 什么是二叉树? 在计算机科学中,二叉树是每个结点最多有两个子树的树结构. 通常子树被称作“左子树”(left subtree)和“右子树”(right subtree). 二叉树常 ...

  3. [学习笔记] 二叉查找树/BST

    平衡树前传之BST 二叉查找树(\(BST\)),是一个类似于堆的数据结构, 并且,它也是平衡树的基础. 因此,让我们来了解一下二叉查找树吧. (其实本篇是作为放在平衡树前的前置知识的,但为了避免重复 ...

  4. 【查找结构 2】二叉查找树 [BST]

    当所有的静态查找结构添加和删除一个数据的时候,整个结构都需要重建.这对于常常需要在查找过程中动态改变数据而言,是灾难性的.因此人们就必须去寻找高效的动态查找结构,我们在这讨论一个非常常用的动态查找树— ...

  5. 二叉查找树(BST)的实现

    一.二叉树介绍 二叉查找树(Binary Search Tree,BST),又称二叉排序树,也称二叉搜索树,它或者是一颗空树,或者具有如下性质的树:若它的左子树不为空,则左子树上所有节点的值都小于根节 ...

  6. 3.2 符号表之二叉查找树BST

    一.插入和查找 1.二叉查找树(Binary Search Tree)是一棵二叉树,并且每个结点都含有一个Comparable的键,保证每个结点的键都大于其左子树中任意结点的键而小于其右子树的任意结点 ...

  7. 从一段简单算法题来谈二叉查找树(BST)的基础算法

    先给出一道很简单,喜闻乐见的二叉树算法题: 给出一个二叉查找树和一个目标值,如果其中有两个元素的和等于目标值则返回真,否则返回假. 例如: Input: 5 / \ 3 6 / \ \ 2 4 7 T ...

  8. 二叉查找树BST

    每棵子树头节点的值都比各自左子树上所有节点值要大,也都比各自右子树上所有节点值要小. 二叉查找树的中序遍历序列一定是从小到大排列的. 一个节点的后继节点是指,这个节点在中序遍历序列中的下一个节点.相应 ...

  9. K:二叉查找树(BST)

    相关介绍:  二叉查找树(英语:Binary Search Tree),也称二叉搜索树.有序二叉树(英语:ordered binary tree),排序二叉树(英语:sorted binary tre ...

随机推荐

  1. [JZOJ NOIP2018模拟10.20 A组]

    由于T3数据出锅,还不清楚自己的分数...估分150,前100已经拿到了,T3的50没拍过(写的就是暴力怎么拍),感觉很不稳 考试的时候就是特别的困,大概是因为早上在房间里腐败...腐败完了才睡觉 T ...

  2. MYSQL binlog 日志内容查看

    记录mysql数据库真正执行更改的所有操作(DML语句),不包含那些没有修改任何数据的语句,不会记录select和show这样的语句. 二进制日志的作用: 1. 可以完成主从复制的功能 2. 进行恢复 ...

  3. xshell同时发送多条命令

    1.如图,勾选撰写栏 勾选全部会话 下面的是一个很方便的小技巧.分屏 如下图垂直排列 水平排列等等

  4. SVN Commit报错 svn: E155037: Previous operation has not finished; run 'cleanup' if it was interrupted

    svn commit 文件出错 svn: E155037: Commit failed (details follow): svn: E155037: Previous operation has n ...

  5. oracle数据的启动

    打开实例 , 数据库到nomount状态: startup nomount;  参数文件 内存,进程 指定控制文件数据库打开到mount状态: alter datatbase mount;  控制文件 ...

  6. Volatile variables

    Volatile variables apply another type of memory constraint to individual variables. The compiler oft ...

  7. 我的Java历程_写出这个数

    lzJava基础进行中,今天偶然间看到的一个题目: 读入一个自然数n,计算其各位数字之和,用汉语拼音写出和的每一位数字.如下代码: import java.util.*;public class Ma ...

  8. 优动漫PAINT基础系列之图层模式

    在绘画软件优动漫PAINT中,笔刷工具属性中的消除锯齿变成灰色无法选择了?铅笔绘制没有压感?快来改改图层模式~ 优动漫PAINT下载:http://www.dongmansoft.com/xiazai ...

  9. Python3基础笔记---序列化

    1.json模块   菜鸟教程 JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,易于人阅读和编写. import json json.dumps json ...

  10. [CTSC2016]单调上升路径

    题目:UOJ#201. 题目大意:给定n个点(n是偶数)的完全图,现在要你给每条边确定一个权值(互不相等),使得最长的单调上升路径最短.现在要你输出边的权值. 一条路径被称为单调上升的,如果沿着它走时 ...