Sum of divisors

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 4318    Accepted Submission(s): 1382

Problem Description
mmm is learning division, she's so proud of herself that she can figure out the sum of all the divisors of numbers no larger than 100 within one day!

But her teacher said "What if I ask you to give not only the sum but the square-sums of all the divisors of numbers within hexadecimal number 100?

" mmm get stuck and she's asking for your help.

Attention, because mmm has misunderstood teacher's words, you have to solve a problem that is a little bit different.

Here's the problem, given n, you are to calculate the square sums of the digits of all the divisors of n, under the base m.

 
Input
Multiple test cases, each test cases is one line with two integers.

n and m.(n, m would be given in 10-based)

1≤n≤109

2≤m≤16

There are less then 10 test cases.
 
Output
Output the answer base m.
 
Sample Input
10 2
30 5
 
Sample Output
110
112
Hint
Use A, B, C...... for 10, 11, 12......
Test case 1: divisors are 1, 2, 5, 10 which means 1, 10, 101, 1010 under base 2, the square sum of digits is
1^2+ (1^2 + 0^2) + (1^2 + 0^2 + 1^2) + .... = 6 = 110 under base 2.
 
Source
 

题目:看hint都能看懂啥意思吧。就是去找因数。挺简单~



AC代码:



#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string.h>
#include<math.h>
using namespace std; int bit[100];
int cnt; void change(int n,int base)
{
cnt=0;
while(n)
{
bit[cnt++]=n%base;
n/=base;
}
}
int main()
{
int n, m;
while(scanf("%d %d", &n, &m)!=EOF)
{
int sum=0;
int t=(int)sqrt(n*1.0);
for(int i = 1; i <= t; i++)
{
if(n%i == 0)
{
int tmp = i;
while(tmp)
{
sum += ((tmp%m)*(tmp%m));
tmp /= m;
}
tmp = n/i;
if(tmp == i)continue;
while(tmp)
{
sum += ((tmp%m) * (tmp%m));
tmp /= m;
}
}
}
change(sum, m);
for(int i = cnt-1; i >= 0; i--)
{
if(bit[i] > 9) printf("%c", bit[i]-10+'A');
else printf("%d", bit[i]);
}
putchar(10);
}
return 0;
}

版权声明:本文博主原创文章,博客,未经同意不得转载。

HDU-4432-Sum of divisors ( 2012 Asia Tianjin Regional Contest )的更多相关文章

  1. HDU 4436 str2int(后缀自动机)(2012 Asia Tianjin Regional Contest)

    Problem Description In this problem, you are given several strings that contain only digits from '0' ...

  2. HDU 4441 Queue Sequence(优先队列+Treap树)(2012 Asia Tianjin Regional Contest)

    Problem Description There's a queue obeying the first in first out rule. Each time you can either pu ...

  3. HDU 4433 locker(DP)(2012 Asia Tianjin Regional Contest)

    Problem Description A password locker with N digits, each digit can be rotated to 0-9 circularly.You ...

  4. HDU 4431 Mahjong(枚举+模拟)(2012 Asia Tianjin Regional Contest)

    Problem Description Japanese Mahjong is a four-player game. The game needs four people to sit around ...

  5. HDU 4467 Graph(图论+暴力)(2012 Asia Chengdu Regional Contest)

    Description P. T. Tigris is a student currently studying graph theory. One day, when he was studying ...

  6. HDU 4468 Spy(KMP+贪心)(2012 Asia Chengdu Regional Contest)

    Description “Be subtle! Be subtle! And use your spies for every kind of business. ”― Sun Tzu“A spy w ...

  7. HDU 3726 Graph and Queries(平衡二叉树)(2010 Asia Tianjin Regional Contest)

    Description You are given an undirected graph with N vertexes and M edges. Every vertex in this grap ...

  8. HDU 3696 Farm Game(拓扑+DP)(2010 Asia Fuzhou Regional Contest)

    Description “Farm Game” is one of the most popular games in online community. In the community each ...

  9. HDU 4433 locker 2012 Asia Tianjin Regional Contest 减少国家DP

    意甲冠军:给定的长度可达1000数的顺序,图像password像锁.可以上下滑动,同时会0-9周期. 每个操作.最多三个数字连续操作.现在给出的起始序列和靶序列,获得操作的最小数量,从起始序列与靶序列 ...

随机推荐

  1. LA 5713 - Qin Shi Huang's National Road System(HDU 4081) MST

    LA:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_pr ...

  2. 结合Wireshark捕获分组深入理解TCP/IP协议栈之DNS协议

    摘要:     本文简单介绍了DNS协议理论知识,给出URL解析步骤,详细讲述了DNS报文各个字段含义,并从Wireshark俘获分组中选取DNS相关报文进行分析. 一.概述 1.1 DNS      ...

  3. HDU 1407 测试你是否和LTC水平一样高 枚举、二分、hash

    http://acm.hdu.edu.cn/showproblem.php?pid=1407 计算方程x^2+y^2+z^2= num的一个正整数解.num为不大于10000的正整数 思路: 方法一. ...

  4. PBOC

    http://blog.sina.com.cn/s/blog_64cc82620100rcgu.html 最近在做一个基于PBOC电子现金卡的终端应用, 项目还没有完成, 但电子现金部分的处理模块已完 ...

  5. link和@import引入外部样式的区别

    原文: 简书原文:https://www.jianshu.com/p/14f99062f29a 大纲 前言 1.隶属上的差别 2.加载顺序的不同 3.兼容性上的差别 4.使用DOM控制样式时的差别 5 ...

  6. angular自定义指令相关知识及代码

    原文地址 https://www.jianshu.com/p/0c015862156d 大纲 1.自定义指令之——属性指令 2.自定义属性指令的运行原理 3.自定义属性指令代码实践 4.自定义结构指令 ...

  7. [Recompose] Lock Props using Recompose -- withProps

    Learn how to use the ‘withProps’ higher order component to pre-fill a prop, unable to be overridden. ...

  8. ios开发runtime学习三:动态添加方法(实际应用少,面试)

    #import "ViewController.h" #import "Person.h" /* 1: Runtime(动态添加方法):OC都是懒加载机制,只要 ...

  9. 【solr专题之四】关于VelocityResponseWriter 分类: H4_SOLR/LUCENCE 2014-07-22 12:32 1639人阅读 评论(0) 收藏

    一.关于Velocity的基本配置 在Solr中,可以以多种方式返回搜索结果,如单纯的文本回复(XML.JSON.CSV等),也可以返回velocity,js等格式.而VelocityResponse ...

  10. TF-IDF模型

    TF-IDF模型 1. 理论基础 由于数据挖掘所有数据都要以数字形式存在,而文本是以字符串形式存在.所以进行文本挖掘时需要先对字符串进行数字化,从而能够进行计算.TF-IDF就是这样一种技术,能够将字 ...