一、简介

ElasticSearch和Solr都是基于Lucene的搜索引擎,不过ElasticSearch天生支持分布式,而Solr是4.0版本后的SolrCloud才是分布式版本,Solr的分布式支持需要ZooKeeper的支持。

这里有一个详细的ElasticSearch和Solr的对比:http://solr-vs-elasticsearch.com/

二、基本用法

Elasticsearch集群可以包含多个索引(indices),每一个索引可以包含多个类型(types),每一个类型包含多个文档(documents),然后每个文档包含多个字段(Fields),这种面向文档型的储存,也算是NoSQL的一种吧。

ES比传统关系型数据库,对一些概念上的理解:

Relational DB -> Databases -> Tables -> Rows -> Columns
Elasticsearch -> Indices -> Types -> Documents -> Fields

从创建一个Client到添加、删除、查询等基本用法:

1、创建Client

public ElasticSearchService(String ipAddress, int port) {
client = new TransportClient()
.addTransportAddress(new InetSocketTransportAddress(ipAddress,
port));
}

这里是一个TransportClient。

ES下两种客户端对比:

TransportClient:轻量级的Client,使用Netty线程池,Socket连接到ES集群。本身不加入到集群,只作为请求的处理。

Node Client:客户端节点本身也是ES节点,加入到集群,和其他ElasticSearch节点一样。频繁的开启和关闭这类Node Clients会在集群中产生“噪音”。

2、创建/删除Index和Type信息

    // 创建索引
public void createIndex() {
client.admin().indices().create(new CreateIndexRequest(IndexName))
.actionGet();
} // 清除所有索引
public void deleteIndex() {
IndicesExistsResponse indicesExistsResponse = client.admin().indices()
.exists(new IndicesExistsRequest(new String[] { IndexName }))
.actionGet();
if (indicesExistsResponse.isExists()) {
client.admin().indices().delete(new DeleteIndexRequest(IndexName))
.actionGet();
}
} // 删除Index下的某个Type
public void deleteType(){
client.prepareDelete().setIndex(IndexName).setType(TypeName).execute().actionGet();
} // 定义索引的映射类型
public void defineIndexTypeMapping() {
try {
XContentBuilder mapBuilder = XContentFactory.jsonBuilder();
mapBuilder.startObject()
.startObject(TypeName)
.startObject("properties")
.startObject(IDFieldName).field("type", "long").field("store", "yes").endObject()
.startObject(SeqNumFieldName).field("type", "long").field("store", "yes").endObject()
.startObject(IMSIFieldName).field("type", "string").field("index", "not_analyzed").field("store", "yes").endObject()
.startObject(IMEIFieldName).field("type", "string").field("index", "not_analyzed").field("store", "yes").endObject()
.startObject(DeviceIDFieldName).field("type", "string").field("index", "not_analyzed").field("store", "yes").endObject()
.startObject(OwnAreaFieldName).field("type", "string").field("index", "not_analyzed").field("store", "yes").endObject()
.startObject(TeleOperFieldName).field("type", "string").field("index", "not_analyzed").field("store", "yes").endObject()
.startObject(TimeFieldName).field("type", "date").field("store", "yes").endObject()
.endObject()
.endObject()
.endObject(); PutMappingRequest putMappingRequest = Requests
.putMappingRequest(IndexName).type(TypeName)
.source(mapBuilder);
client.admin().indices().putMapping(putMappingRequest).actionGet();
} catch (IOException e) {
log.error(e.toString());
}
}

这里自定义了某个Type的索引映射(Mapping),默认ES会自动处理数据类型的映射:针对整型映射为long,浮点数为double,字符串映射为string,时间为date,true或false为boolean。

注意:针对字符串,ES默认会做“analyzed”处理,即先做分词、去掉stop words等处理再index。如果你需要把一个字符串做为整体被索引到,需要把这个字段这样设置:field("index", "not_analyzed")。

详情参考:https://www.elastic.co/guide/en/elasticsearch/guide/current/mapping-intro.html

3、索引数据

    // 批量索引数据
public void indexHotSpotDataList(List<Hotspotdata> dataList) {
if (dataList != null) {
int size = dataList.size();
if (size > 0) {
BulkRequestBuilder bulkRequest = client.prepareBulk();
for (int i = 0; i < size; ++i) {
Hotspotdata data = dataList.get(i);
String jsonSource = getIndexDataFromHotspotData(data);
if (jsonSource != null) {
bulkRequest.add(client
.prepareIndex(IndexName, TypeName,
data.getId().toString())
.setRefresh(true).setSource(jsonSource));
}
} BulkResponse bulkResponse = bulkRequest.execute().actionGet();
if (bulkResponse.hasFailures()) {
Iterator<BulkItemResponse> iter = bulkResponse.iterator();
while (iter.hasNext()) {
BulkItemResponse itemResponse = iter.next();
if (itemResponse.isFailed()) {
log.error(itemResponse.getFailureMessage());
}
}
}
}
}
} // 索引数据
public boolean indexHotspotData(Hotspotdata data) {
String jsonSource = getIndexDataFromHotspotData(data);
if (jsonSource != null) {
IndexRequestBuilder requestBuilder = client.prepareIndex(IndexName,
TypeName).setRefresh(true);
requestBuilder.setSource(jsonSource)
.execute().actionGet();
return true;
} return false;
} // 得到索引字符串
public String getIndexDataFromHotspotData(Hotspotdata data) {
String jsonString = null;
if (data != null) {
try {
XContentBuilder jsonBuilder = XContentFactory.jsonBuilder();
jsonBuilder.startObject().field(IDFieldName, data.getId())
.field(SeqNumFieldName, data.getSeqNum())
.field(IMSIFieldName, data.getImsi())
.field(IMEIFieldName, data.getImei())
.field(DeviceIDFieldName, data.getDeviceID())
.field(OwnAreaFieldName, data.getOwnArea())
.field(TeleOperFieldName, data.getTeleOper())
.field(TimeFieldName, data.getCollectTime())
.endObject();
jsonString = jsonBuilder.string();
} catch (IOException e) {
log.equals(e);
}
} return jsonString;
}

ES支持批量和单个数据索引。

4、查询获取数据

    // 获取少量数据100个
private List<Integer> getSearchData(QueryBuilder queryBuilder) {
List<Integer> ids = new ArrayList<>();
SearchResponse searchResponse = client.prepareSearch(IndexName)
.setTypes(TypeName).setQuery(queryBuilder).setSize(100)
.execute().actionGet();
SearchHits searchHits = searchResponse.getHits();
for (SearchHit searchHit : searchHits) {
Integer id = (Integer) searchHit.getSource().get("id");
ids.add(id);
}
return ids;
} // 获取大量数据
private List<Integer> getSearchDataByScrolls(QueryBuilder queryBuilder) {
List<Integer> ids = new ArrayList<>();
// 一次获取100000数据
SearchResponse scrollResp = client.prepareSearch(IndexName)
.setSearchType(SearchType.SCAN).setScroll(new TimeValue(60000))
.setQuery(queryBuilder).setSize(100000).execute().actionGet();
while (true) {
for (SearchHit searchHit : scrollResp.getHits().getHits()) {
Integer id = (Integer) searchHit.getSource().get(IDFieldName);
ids.add(id);
}
scrollResp = client.prepareSearchScroll(scrollResp.getScrollId())
.setScroll(new TimeValue(600000)).execute().actionGet();
if (scrollResp.getHits().getHits().length == 0) {
break;
}
} return ids;
}

这里的QueryBuilder是一个查询条件,ES支持分页查询获取数据,也可以一次性获取大量数据,需要使用Scroll Search。

5、聚合(Aggregation Facet)查询

    // 得到某段时间内设备列表上每个设备的数据分布情况<设备ID,数量>
public Map<String, String> getDeviceDistributedInfo(String startTime,
String endTime, List<String> deviceList) { Map<String, String> resultsMap = new HashMap<>(); QueryBuilder deviceQueryBuilder = getDeviceQueryBuilder(deviceList);
QueryBuilder rangeBuilder = getDateRangeQueryBuilder(startTime, endTime);
QueryBuilder queryBuilder = QueryBuilders.boolQuery()
.must(deviceQueryBuilder).must(rangeBuilder); TermsBuilder termsBuilder = AggregationBuilders.terms("DeviceIDAgg").size(Integer.MAX_VALUE)
.field(DeviceIDFieldName);
SearchResponse searchResponse = client.prepareSearch(IndexName)
.setQuery(queryBuilder).addAggregation(termsBuilder)
.execute().actionGet();
Terms terms = searchResponse.getAggregations().get("DeviceIDAgg");
if (terms != null) {
for (Terms.Bucket entry : terms.getBuckets()) {
resultsMap.put(entry.getKey(),
String.valueOf(entry.getDocCount()));
}
}
return resultsMap;
}

Aggregation查询可以查询类似统计分析这样的功能:如某个月的数据分布情况,某类数据的最大、最小、总和、平均值等。

详情参考:https://www.elastic.co/guide/en/elasticsearch/client/java-api/current/java-aggs.html

三、集群配置

配置文件elasticsearch.yml

集群名和节点名:

#cluster.name: elasticsearch

#node.name: "Franz Kafka"

是否参与master选举和是否存储数据

#node.master: true

#node.data: true

分片数和副本数

#index.number_of_shards: 5
#index.number_of_replicas: 1

master选举最少的节点数,这个一定要设置为整个集群节点个数的一半加1,即N/2+1

#discovery.zen.minimum_master_nodes: 1

discovery ping的超时时间,拥塞网络,网络状态不佳的情况下设置高一点

#discovery.zen.ping.timeout: 3s

注意,分布式系统整个集群节点个数N要为奇数个!!

如何避免ElasticSearch发生脑裂(brain split):http://blog.trifork.com/2013/10/24/how-to-avoid-the-split-brain-problem-in-elasticsearch/

即使集群节点个数为奇数,minimum_master_nodes为整个集群节点个数一半加1,也难以避免脑裂的发生,详情看讨论:https://github.com/elastic/elasticsearch/issues/2488

四、Elasticsearch插件

1、elasticsearch-head是一个elasticsearch的集群管理工具:./elasticsearch-1.7.1/bin/plugin -install mobz/elasticsearch-head

2、elasticsearch-sql:使用SQL语法查询elasticsearch:./bin/plugin -u https://github.com/NLPchina/elasticsearch-sql/releases/download/1.3.5/elasticsearch-sql-1.3.5.zip --install sql

github地址:https://github.com/NLPchina/elasticsearch-sql

3、elasticsearch-bigdesk是elasticsearch的一个集群监控工具,可以通过它来查看ES集群的各种状态。

安装:./bin/plugin -install lukas-vlcek/bigdesk

访问:http://192.103.101.203:9200/_plugin/bigdesk/

4、elasticsearch-servicewrapper插件是ElasticSearch的服务化插件,

在https://github.com/elasticsearch/elasticsearch-servicewrapper下载该插件后,解压缩,将service目录拷贝到elasticsearch目录的bin目录下。

而后,可以通过执行以下语句安装、启动、停止ElasticSearch:

sh elasticsearch install

sh elasticsearch start

sh elasticsearch stop

参考:

https://www.elastic.co/guide/en/elasticsearch/client/java-api/current/index.html

https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html

http://stackoverflow.com/questions/10213009/solr-vs-elasticsearch

http://www.cnblogs.com/luxiaoxun/archive/2015/10/11/4869509.html

解决bigdesk环境搭建问题:

e:\elasticsearch-2.3.4\bin>plugin.bat install lukas-vlcek/bigdesk/2.5.0
-> Installing lukas-vlcek/bigdesk/2.5.0...
Trying https://download.elastic.co/lukas-vlcek/bigdesk/bigdesk-2.5.0.zip ...
Trying https://search.maven.org/remotecontent?filepath=lukas-vlcek/bigdesk/2.5.0/bigdesk-2.5.0.zip ...
Trying https://oss.sonatype.org/service/local/repositories/releases/content/luka
s-vlcek/bigdesk/2.5.0/bigdesk-2.5.0.zip ...
Trying https://github.com/lukas-vlcek/bigdesk/archive/2.5.0.zip ...
Trying https://github.com/lukas-vlcek/bigdesk/archive/master.zip ...
Downloading ....................................................................
................................................................................
................................................................................
......................DONE
Verifying https://github.com/lukas-vlcek/bigdesk/archive/master.zip checksums if available ...
NOTE: Unable to verify checksum for downloaded plugin (unable to find .sha1 or .md5 file to verify)
ERROR: Could not find plugin descriptor 'plugin-descriptor.properties' in plugin zip

解决办法:https://github.com/lukas-vlcek/bigdesk/issues/86

I have modified bigdesk code to be compatible with elasticsearch 2.x
https://github.com/nishantsaini/bigdesk
Hope this helps
e:\elasticsearch-2.3.4\bin>plugin.bat install nishantsaini/bigdesk
-> Installing nishantsaini/bigdesk...
Trying https://github.com/nishantsaini/bigdesk/archive/master.zip ...
Downloading ....................................................................
................................................................................
................................................................................
......................DONE
Verifying https://github.com/nishantsaini/bigdesk/archive/master.zip checksums if available ...
NOTE: Unable to verify checksum for downloaded plugin (unable to find .sha1 or .md5 file to verify)
Installed bigdesk into e:\elasticsearch-2.3.4\plugins\bigdesk e:\elasticsearch-2.3.4\bin>
e:\elasticsearch-2.3.4\bin>
e:\elasticsearch-2.3.4\bin>plugin.bat list
Installed plugins in e:\elasticsearch-2.3.4\plugins:
- bigdesk
- head
- ik

查看效果:
http://localhost:9200/_plugin/bigdesk/

ElasticSearch的基本用法与集群搭建 good的更多相关文章

  1. ElasticSearch的基本用法与集群搭建

    一.简介 ElasticSearch和Solr都是基于Lucene的搜索引擎,不过ElasticSearch天生支持分布式,而Solr是4.0版本后的SolrCloud才是分布式版本,Solr的分布式 ...

  2. ElasticSearch入门(1) —— 集群搭建

    一.环境介绍与安装准备 1.环境说明 2台虚拟机,OS为ubuntu13.04,ip分别为xxx.xxx.xxx.140和xxx.xxx.xxx.145. 2.安装准备 ElasticSearch(简 ...

  3. elasticsearch+kibana+fluentd 日志搜集集群搭建

    使用fluentd来搜集Nginx日志,准备3台服务器,列表如下 node1 elasticsearch/kibana/td-agent node2 td-agent/nginx node3 td-a ...

  4. elasticsearch集群搭建实例

    elasticsearch集群搭建实例 下个月又开始搞搜索了,几个月没动这块还好没有落下. 晚上在自己虚拟机上搭建了一个简易搜索集群,分享一下. 操作系统环境: Red Hat 4.8.2-16 el ...

  5. elasticsearch系列八:ES 集群管理(集群规划、集群搭建、集群管理)

    一.集群规划 搭建一个集群我们需要考虑如下几个问题: 1. 我们需要多大规模的集群? 2. 集群中的节点角色如何分配? 3. 如何避免脑裂问题? 4. 索引应该设置多少个分片? 5. 分片应该设置几个 ...

  6. Elasticsearch集群搭建及使用Java客户端对数据存储和查询

    本次博文发两块,前部分是怎样搭建一个Elastic集群,后半部分是基于Java对数据进行写入和聚合统计. 一.Elastic集群搭建 1. 环境准备. 该集群环境基于VMware虚拟机.CentOS ...

  7. 和我一起打造个简单搜索之ElasticSearch集群搭建

    我们所常见的电商搜索如京东,搜索页面都会提供各种各样的筛选条件,比如品牌.尺寸.适用季节.价格区间等,同时提供排序,比如价格排序,信誉排序,销量排序等,方便了用户去找到自己心里理想的商品. 站内搜索对 ...

  8. ElasticStack之Elasticsearch集群搭建

    需搭建服务器环境 操作系统 Host:port node 1 CentOS 7.2.1511 11.1.11.127:9200 node1 2 CentOS 7.2.1511 11.1.11.128: ...

  9. elasticsearch 集群管理(集群规划、集群搭建、集群管理)

    一.集群规划 搭建一个集群我们需要考虑如下几个问题: 1. 我们需要多大规模的集群? 2. 集群中的节点角色如何分配? 3. 如何避免脑裂问题? 4. 索引应该设置多少个分片? 5. 分片应该设置几个 ...

随机推荐

  1. trident原理及编程指南

    目录 trident原理及编程指南 一.理论介绍 1.trident是什么? 2.trident处理单位 3.事务类型 二.编程指南 1.定义输入流 2.统计单词数量 3.输出统计结果 4.split ...

  2. eclipse开发环境下集成activiti插件

    一.环境 eclipse 4.3.0 Activiti Designer 5.14.1 二.Activiti Designer 5.14.1插件安装 在eclipse中菜单help->Insta ...

  3. opencv播放不了AVI视频的问题

    有些avi视频的编码可能不是Cinepak Codec by Radius编码格式的,需要转换成这种格式. 我用的是swf转avi视频,在转变换时----->设置---->AVI视频设置- ...

  4. [TypeStyle] Style CSS pseudo-classes using TypeStyle with $nest

    TypeStyle is a very thin layer on top of CSS. In this lesson we show how to change styles based on p ...

  5. php实现旋转数组的最小数字

    php实现旋转数组的最小数字 一.总结 1.题目描述定位法:掐准输入输出这两个关键词,然后题目意思就很清晰了 2.这个题目就是找数组的最小值 二.php实现旋转数组的最小数字 题目描述: 把一个数组最 ...

  6. 【50.00%】【codeforces 602C】The Two Routes

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  7. [Angular] Zones and NgZone

    NgZone, Angular uses it to profiling all the async actions such as setTimeout, http request and anim ...

  8. The trust relationship between this workstation and the primary domain failed(断网可以登进来)(正确的解决方式用管理员登进去 :退域再加域)

    The trust relationship between this workstation and the primary domain failed(断网可以登进来)(正确的解决方式用管理员登进 ...

  9. jquery或js 获取url参数

    <script type="text/javascript"> function getUrlParam(name) { var reg = new RegExp(&q ...

  10. springMVC注解@initbinder

    在实际操作中经常会碰到表单中的日期 字符串和Javabean中的日期类型的属性自动转换, 而springMVC默认不支持这个格式的转换,所以必须要手动配置, 自定义数据类型的绑定才能实现这个功能. 比 ...