单源最短路问题是固定一个起点,求它到其他所有点的最短路的问题。

算法:

设 d[i]  表示 起点 s 离点 i 的最短距离。

【1.初始化】  固定起点s,对所有的点 , 如果 i =  s ,   d[i]  置为 0 ;如果  i  !=  s  , d[i]  置为  INF,执行 2。

【2.更新】 update = false。  用所有的边更新所有的点离源点的距离,update = true。

            如果更新过update = true,重复执行2 ; 如果没有更新过update = false, 执行3。

【3.输出】  打印  d  数组中所求的结果。

代码:

#include <bits\stdc++.h>
using namespace std;
#define INF 2147483647
#define MAX_V 1000
#define MAX_E 2000 // 单源最短路径1(Bellman-Ford算法) struct edge{
int from,to,cost;
}; edge es[MAX_E]; //所有的边 int d[MAX_V]; //d[i]表示源点到i点的最短距离
int V,E; //V是顶点数,E是边数 //求解从s离所有点的距离
void shortest_path(int s){
for(int i = ;i < V; i++) d[i] = INF;
d[s] = ;
//用可到达的点和从这个点出发的边更新这条边到达的点与源点的距离。
//如果无点可更新,则跳出
while(true){
bool update = false;
for(int i = ;i < E; i++){
edge e = es[i];
if(d[e.from] != INF && d[e.to] > d[e.from] + e.cost){
d[e.to] = d[e.from] + e.cost;
update = true;
}
}
if(!update) break;
}
} int main(){
}

负圈:负圈又称负环,就是说一个全部由负权的边组成的环,这样的话不存在最短路,因为每在环中转一圈路径总长就会变小。

Bellman-Ford算法求最短路径不会经过同一个点两次。如果不存在负圈的话最多会更新 V-1 次,即每次只更新出一个点(想象一下线性存储的情况)。

如果有负圈的话会无限更新下去。

所以判断负圈是否存在只用判断是否更新了大于V-1次即可。

代码:

#include <bits\stdc++.h>
using namespace std;
#define INF 2147483647
#define MAX_V 1000
#define MAX_E 2000 // 单源最短路径1(Bellman-Ford算法) struct edge{
int from,to,cost;
}; edge es[MAX_E]; //所有的边 int d[MAX_V]; //d[i]表示源点到i点的最短距离
int V,E; //V是顶点数,E是边数 //判断是否存在负圈
bool find_negative_loop(){
memset(d,,sizeof(d)); for(int i = ;i <= V; i++){
for(int j = ;j < E; j++){
edge e = es[j];
if(d[e.to] > d[e.from] + e.cost){
d[e.to] = d[e.from] + e.cost; //如果更新了V次说明存在负圈
if(i == V) return true;
}
}
} return false;
} int main(){
}

【算法】Bellman-Ford算法(单源最短路径问题)(判断负圈)的更多相关文章

  1. 基于visual Studio2013解决算法导论之043单源最短路径dijstra矩阵

     题目 单源最短路径dijstra矩阵 解决代码及点评 // 26单源最短路径dijstra矩阵.cpp : 定义控制台应用程序的入口点. // #include <iostream> ...

  2. 基于visual Studio2013解决算法导论之042单源最短路径

     题目 单源最短路径 解决代码及点评 // 26单源最短路径bellmanford.cpp : 定义控制台应用程序的入口点. // #include <iostream> #incl ...

  3. Bellman-Ford算法 例题:P3371 单源最短路径

    看到还没人用Bellman-Ford过,赶紧水一发 lz非常弱,求各位大佬轻喷qwq 洛谷题目传送门:P3371 0."松弛"操作 如果存在一条边\((u,v)\)通过中继的方式可 ...

  4. Bellman-Ford 单源最短路径算法

    Bellman-Ford 算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-Source Shortest Path)的算法.该算法由 Richard Bellman 和 Leste ...

  5. Bellman - Ford 算法解决最短路径问题

    Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...

  6. Dijkstra 单源最短路径算法

    Dijkstra 算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-Source Shortest Path)的算法,由计算机科学家 Edsger Dijkstra 于 1956 年 ...

  7. Til the Cows Come Home(poj 2387 Dijkstra算法(单源最短路径))

    Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 32824   Accepted: 11098 Description Bes ...

  8. Bellman-Ford算法 - 有向图单源最短路径

    2017-07-27  08:58:08 writer:pprp 参考书目:张新华的<算法竞赛宝典> Bellman-Ford算法是求有向图单源最短路径的,dijkstra算法的条件是图中 ...

  9. 单源最短路径算法---Dijkstra

    Dijkstra算法树解决有向图G=(V,E)上带权的单源最短路径问题,但是要求所有边的权值非负. 解题思路: V表示有向图的所有顶点集合,S表示那么一些顶点结合,从源点s到该集合中的顶点的最终最短路 ...

  10. 单源最短路径——dijkstra算法

    dijkstra算法与prim算法的区别   1.先说说prim算法的思想: 众所周知,prim算法是一个最小生成树算法,它运用的是贪心原理(在这里不再证明),设置两个点集合,一个集合为要求的生成树的 ...

随机推荐

  1. 移动App测试点

    移动互联网App测试点包括: 1.安全测试 1)软件权限 -扣费风险:包括发送短信.拨打电话.连接网络等 -隐私泄露风险:包括访问手机信息.访问联系人信息等 -新增风险项 2)开发者官方权限列表信息比 ...

  2. CSS3 过渡、动画、多列、用户界面

    CSS3 过渡.动画.多列.用户界面 transition过渡 transition: transition-property transition-duration transition-timin ...

  3. SQL的几个路径

    这个是主数据库文件存放的地方 C:\Program Files\Microsoft SQL Server\MSSQL12.MSSQLSERVER2014\MSSQL\DATA

  4. mock non-virtual methods

    生产代码中有很多类方法是非虚的,而为了在Gtest中解除这些非必需的依赖,可以通过Gmock的mock non-virtual methods using templates方法来达到目的.在此之前, ...

  5. spring mvc 项目 相关配置文件小结

    web.xml文件主要配置如下: 需要加载的配置文件: 类路径下,可以使用通配符配置  类似:classpath:conf/spring/*/*.xml, <context-param> ...

  6. How an Event Enters a Cocoa Application

    How an Event Enters a Cocoa Application An event is a low-level record of a user action that is usua ...

  7. Unity脚本生命周期 图解

    简单总结的话就是: Awake():初始化时执行,类似c#中的构造函数 OnEnable() Start() FixUpdate() Update() OnDisable() OnDestory() ...

  8. ZBrush中的实时遮罩

    在ZBrush®中有许多遮罩类型,包括柔滑遮罩.反转遮罩,实时遮罩等.其中,实时遮罩又包含很多种类,它不同于一般的遮罩是不显示的,实时遮罩是根据实时信息产生新的遮罩. 在“Brush”菜单下“Auto ...

  9. js浏览器问题

    前段时间做了个项目,里面关于手机移动端下载的问题 开始是判断微信.ios和android系统的下载 因为微信屏蔽点击事件和链接的缘故,需要通过打开新页面来进行下载 ios和android的下载分别为不 ...

  10. 粘包解决高端_Server

    from socket import * #导入套接字模块的所有命令import subprocess #导入subprocess模块,用于执行命令行import struct #导入struck模块 ...