题目链接

题目大意:

给定一个长度为 n 的非负整数序列 a[1..n]

你需要求有多少个非负整数 S 满足以下两个条件:

(1).0 ≤ S < 260

(2).对于所有 1 ≤ i < n ,有 (a[i] xor S) ≤ (a[i+1] xor S)

1 ≤ n ≤ 50

0 ≤ a[i] < 260

-------------------------------------------------------------------------------------

开始看到题感觉无从下手,分析了一下才发现是到水题。

维护一个60位的标记数组,用来表示S的第i位可以放置的数(11为置01都可,01为只可置0,10为只可置1,00为都不能放)。初始状态为11。

开始时n个数在一个组内,要满足条件(2),n个数的最高位必须满足

1)全部为0或1;这时候该位可以放0或者1。

2)前几个数最高位为0,后面的数为1.(或者反过来),但不会出现01交替出现的情况;这时候该位只能放0或者1.

对于情况1)仍把改组扔到次高位处理。

对于情况2)可以把该组分成两组扔到次高位处理。

#include <set>
#include <map>
#include <stack>
#include <queue>
#include <cmath>
#include <vector>
#include <string>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm> #define MAX(a,b) ((a)>=(b)?(a):(b))
#define MIN(a,b) ((a)<=(b)?(a):(b))
#define OO 0x0fffffff
using namespace std;
typedef long long LL;
const int N = ;
int digits[N][N];
void getDigits(int id,LL data){
for(int i=;i<;i++){
digits[id][i]=(data&1L);
data>>=;
}
}
int choice[N];
int n;
LL data;
struct Node{
int level;
int spos,epos;
int sdigit,scnt;
Node(int tlevel,int tspos,int tepos){
level = tlevel;
spos = tspos;
epos = tepos;
}
Node(){}
int length(){
return epos-spos+;
}
};
int main(){
cin>>n;
for(int i=;i<n;i++) {
cin>>data;
getDigits(i,data);
}
for(int i=;i<;i++) choice[i] = ; Node head(,,n-);
queue<Node> q;
q.push(head);
while(!q.empty()){
Node cur = q.front(); q.pop();
cur.sdigit = digits[cur.spos][cur.level];
cur.scnt = ;
for(int r=cur.spos+;r<=cur.epos;r++){
if(digits[r][cur.level]==digits[r-][cur.level])
cur.scnt++;
else break;
}
if(cur.scnt==cur.length()){
choice[cur.level]&=;
if(cur.level)
q.push(Node(cur.level-,cur.spos,cur.epos));
}
else {
choice[cur.level]&=(cur.sdigit+);
if(cur.level){
q.push(Node(cur.level-,cur.spos,cur.spos+cur.scnt-));
q.push(Node(cur.level-,cur.spos+cur.scnt,cur.epos));
}
}
}
LL ans = ;
for(int i=;i<;i++){
if(!choice[i]) {
ans=;
break;
}
if(choice[i]==) ans*=;
}
printf("%lld\n",ans);
return ;
}

hiho1509 异或排序的更多相关文章

  1. hihoCoder挑战赛28 题目1 : 异或排序

    题目1 : 异或排序 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 给定一个长度为 n 的非负整数序列 a[1..n] 你需要求有多少个非负整数 S 满足以下两个条件: ...

  2. [hihocoder1509][异或排序]

    hihocoder1509 思路 对于每两个数,从二进制的高位到低位考虑,发现,若前面一个的当前位是1,后面一个的当前位置是0,那么s的当前位置必须是1.反之,若前面是0,后面是1,那么s的当前位置必 ...

  3. hihoCoder.1509.异或排序(位运算 思路)

    题目链接 \(Description\) 给定长为\(n\)的序列\(A\).求有多少\(S\),满足\(0\leq S<2^{60}\),且对于所有\(i\in[1,n-1]\),\(a[i] ...

  4. hihocoder 1509 异或排序

    题面在这里! 考虑前后两个数 x,y,可以发现S只有在(x xor y)的最高有1位上的取值是要被确定的 (如果x==y那么没有限制),可以推一下什么情况下是1/0. 于是我们模拟一下这个操作,判一判 ...

  5. hihocoder 1509异或排序

    描述 给定一个长度为 n 的非负整数序列 a[1..n] 你需要求有多少个非负整数 S 满足以下两个条件: (1).0 ≤ S < 2^60 (2).对于所有 1 ≤ i < n ,有 ( ...

  6. HihoCoder#1509 : 异或排序(二进制)

    题意 题目链接 Sol 挺简单的吧.考虑两个元素什么时候不满足条件 设\(a_i\)与\(a_i + 1\)最高的不同位分别为0 1,显然\(S\)的这一位必须为\(0\),否则这一位必须为\(1\) ...

  7. 【HIHOCODER 1509 】 异或排序

    描述 给定一个长度为 n 的非负整数序列 a[1..n] 你需要求有多少个非负整数 S 满足以下两个条件: (1).0 ≤ S < 260 (2).对于所有 1 ≤ i < n ,有 (a ...

  8. 【hihoCoder挑战赛28 A】异或排序

    [题目链接]:http://hihocoder.com/problemset/problem/1509 [题意] [题解] 每次找到相邻两个数的二进制形式中; 不同的最高位; 显然S在这一位必然是确定 ...

  9. 【Java数据结构与算法】简单排序、二分查找和异或运算

    简单排序 选择排序 概念 首先,找到数组中最小的那个元素,其次,把它和数组的第一个元素交换位置(如果第一个元素就是最小的元素那么它就和自己交换).再次,在剩下的元素中找到最小的元素,将它与数组的第二个 ...

随机推荐

  1. Vue模拟酷狗APP问题总结

    一.NewSongs.vue中的38行  this.$http.get('/proxy/?json=true')   里面这个路径的获取 二.router文件夹中的index.js  中的  comp ...

  2. 记录sql执行顺序

    SQL 语句执行顺序为: FROM WHERE GROUP BY HAVING SELECT DISTINCT UNION ORDER BY 关于 SQL 语句的执行顺序,有三个值得我们注意的地方: ...

  3. Python多线程一学就会!

    免费Python课程:阿里云大学——开发者课堂 Python中使用线程有两种方式:函数或者用类来包装线程对象. 函数式:调用thread模块中的start_new_thread()函数来产生新线程.语 ...

  4. 【BZOJ5020】[LOJ2289]【THUWC2017】在美妙的数学王国中畅游 - LCT+泰勒展开

    咕咕咕?咕咕咕! 题意: Description 数字和数学规律主宰着这个世界. 机器的运转, 生命的消长, 宇宙的进程, 这些神秘而又美妙的过程无不可以用数学的语言展现出来. 这印证了一句古老的名言 ...

  5. linux 源码包安装拾遗

    源码包安装和apt-get/yum的区别 安装前的区别:概念上的区别 rpm和dpkg包是经过编译过的包,并且其安装位置由厂商说了算,厂商觉得安装在哪里合适,就会装在哪里,而源码包则是没有经过编译的文 ...

  6. HDU 1558 Segment set( 判断线段相交 + 并查集 )

    链接:传送门 题意:输入一个数 n 代表有 n 组操作,P 是在平面内加入一条线段,Q x 是查询第 x 条线段所在相交集合的线段个数 例如:下图 5 与 1.2 相交,1 与 3 相交,2 与 4 ...

  7. python的父类和子类中关于继承的不同版本的写法

    Python 2.7中的继承 在Python 2.7中,继承语法稍有不同,ElectricCar 类的定义类似于下面这样: class Car(object): def __init__(self, ...

  8. Android开发进度04

    1,今日:目标:实现登录和注册功能 2,昨天:完成登录和注册的界面以及后台数据库的操作 3,收获:会使用SQlite数据库的操作语句 4,问题:登录时出现问题(登录不上去)

  9. ARM - Linux嵌入式C/C++各种资料分享【更新日期:2012/04/24】

    http://blog.csdn.net/shuxiao9058/article/details/6786868 由于115网盘取消大众分享功能,因此不能继续分享下载链接.更新资料将在本人分享空间转存 ...

  10. php 魔术方法和魔术常量

    魔术方法:PHP把类中所有以__(两个下划线)开头的方法当成魔术方法,一般建议用户不要将自定义的方法前面加上__作为前缀.魔术方法: 1. __construct() 类的默认构造方法,如果__con ...