Step 0: Load data

The starter code contains code to load 45 2D data points. When plotted using the scatter function, the results should look like the following:

Step 1: Implement PCA

In this step, you will implement PCA to obtain xrot, the matrix in which the data is "rotated" to the basis comprising made up of the principal components

Step 1a: Finding the PCA basis

Find and , and draw two lines in your figure to show the resulting basis on top of the given data points.

Step 1b: Check xRot

Compute xRot, and use the scatter function to check that xRot looks as it should, which should be something like the following:

Step 2: Dimension reduce and replot

In the next step, set k, the number of components to retain, to be 1

Step 3: PCA Whitening

Step 4: ZCA Whitening

Code

close all

%%================================================================
%% Step : Load data
% We have provided the code to load data from pcaData.txt into x.
% x is a * matrix, where the kth column x(:,k) corresponds to
% the kth data point.Here we provide the code to load natural image data into x.
% You do not need to change the code below. x = load('pcaData.txt','-ascii'); % 载入数据
figure();
scatter(x(, :), x(, :)); % 用圆圈绘制出数据分布
title('Raw data'); %%================================================================
%% Step 1a: Implement PCA to obtain U
% Implement PCA to obtain the rotation matrix U, which is the eigenbasis
% sigma. % -------------------- YOUR CODE HERE --------------------
u = zeros(size(x, )); % You need to compute this
[n m]=size(x);
% x=x-repmat(mean(x,),,m); %预处理,均值为零 —— 2维,每一维减去该维上的均值
sigma=(1.0/m)*x*x'; % 协方差矩阵
[u s v]=svd(sigma); % --------------------------------------------------------
hold on
plot([ u(,)], [ u(,)]); % 画第一条线
plot([ u(,)], [ u(,)]); % 画第二条线
scatter(x(, :), x(, :));
hold off %%================================================================
%% Step 1b: Compute xRot, the projection on to the eigenbasis
% Now, compute xRot by projecting the data on to the basis defined
% by U. Visualize the points by performing a scatter plot. % -------------------- YOUR CODE HERE --------------------
xRot = zeros(size(x)); % You need to compute this
xRot=u'*x; % -------------------------------------------------------- % Visualise the covariance matrix. You should see a line across the
% diagonal against a blue background.
figure();
scatter(xRot(, :), xRot(, :));
title('xRot'); %%================================================================
%% Step : Reduce the number of dimensions from to .
% Compute xRot again (this time projecting to dimension).
% Then, compute xHat by projecting the xRot back onto the original axes
% to see the effect of dimension reduction % -------------------- YOUR CODE HERE --------------------
k = ; % Use k = and project the data onto the first eigenbasis
xHat = zeros(size(x)); % You need to compute this
xHat = u*([u(:,),zeros(n,)]'*x); % 降维
% 使特征点落在特征向量所指的方向上而不是原坐标系上 % --------------------------------------------------------
figure();
scatter(xHat(, :), xHat(, :));
title('xHat'); %%================================================================
%% Step : PCA Whitening
% Complute xPCAWhite and plot the results. epsilon = 1e-;
% -------------------- YOUR CODE HERE --------------------
xPCAWhite = zeros(size(x)); % You need to compute this
xPCAWhite = diag(./sqrt(diag(s)+epsilon))*u'*x; % 每个特征除以对应的特征向量,以使每个特征有一致的方差
% --------------------------------------------------------
figure();
scatter(xPCAWhite(, :), xPCAWhite(, :));
title('xPCAWhite'); %%================================================================
%% Step : ZCA Whitening
% Complute xZCAWhite and plot the results. % -------------------- YOUR CODE HERE --------------------
xZCAWhite = zeros(size(x)); % You need to compute this
xZCAWhite = u*diag(./sqrt(diag(s)+epsilon))*u'*x; % --------------------------------------------------------
figure();
scatter(xZCAWhite(, :), xZCAWhite(, :));
title('xZCAWhite'); %% Congratulations! When you have reached this point, you are done!
% You can now move onto the next PCA exercise. :)

Exercise: PCA in 2D的更多相关文章

  1. 【DeepLearning】Exercise:PCA in 2D

    Exercise:PCA in 2D 习题的链接:Exercise:PCA in 2D pca_2d.m close all %%=================================== ...

  2. 【DeepLearning】Exercise:PCA and Whitening

    Exercise:PCA and Whitening 习题链接:Exercise:PCA and Whitening pca_gen.m %%============================= ...

  3. Deep Learning 4_深度学习UFLDL教程:PCA in 2D_Exercise(斯坦福大学深度学习教程)

    前言 本节练习的主要内容:PCA,PCA Whitening以及ZCA Whitening在2D数据上的使用,2D的数据集是45个数据点,每个数据点是2维的.要注意区别比较二维数据与二维图像的不同,特 ...

  4. UFLDL教程笔记及练习答案二(预处理:主成分分析和白化)

    首先将本节主要内容记录下来.然后给出课后习题的答案. 笔记: :首先我想推导用SVD求解PCA的合理性. PCA原理:如果样本数据X∈Rm×n.当中m是样本数量,n是样本的维数.PCA降维的目的就是为 ...

  5. Deep Learning 教程(斯坦福深度学习研究团队)

    http://www.zhizihua.com/blog/post/602.html 说明:本教程将阐述无监督特征学习和深度学习的主要观点.通过学习,你也将实现多个功能学习/深度学习算法,能看到它们为 ...

  6. [Scikit-learn] 4.3 Preprocessing data

    数据分析的重难点,就这么来了,欢迎欢迎,热烈欢迎. 4. Dataset transformations 4.3. Preprocessing data 4.3.1. Standardization, ...

  7. UFLDL教程之(三)PCA and Whitening exercise

    Exercise:PCA and Whitening 第0步:数据准备 UFLDL下载的文件中,包含数据集IMAGES_RAW,它是一个512*512*10的矩阵,也就是10幅512*512的图像 ( ...

  8. PCA and kmeans MATLAB实现

    MATLAB基础知识 l  Imread:  读取图片信息: l  axis:轴缩放:axis([xmin xmax ymin ymax zmin zmax cmin cmax]) 设置 x.y 和  ...

  9. Deep Learning 5_深度学习UFLDL教程:PCA and Whitening_Exercise(斯坦福大学深度学习教程)

    前言 本文是基于Exercise:PCA and Whitening的练习. 理论知识见:UFLDL教程. 实验内容:从10张512*512自然图像中随机选取10000个12*12的图像块(patch ...

随机推荐

  1. 认识javascript的引擎之--1

    前言: 一:每一款浏览器里面都能执行js脚本,那是因为制造商在浏览器里面加入了js引擎.也就是说js引擎在浏览器里面占有一席之地. 1.开始的时候js处于沉睡状态,直到运行页面遇到 <scrip ...

  2. BootStrap--panel面板

    1 <div class="panel panel-default"> <div class="panel-body"> 这是一个基本的 ...

  3. Class.forName()用法详解 【转】

    来源  http://blog.csdn.net/kaiwii/article/details/7405761 主要功能 Class.forName(xxx.xx.xx)返回的是一个类 Class.f ...

  4. iOS下调用元素的focus方法,input元素不聚焦,键盘不弹起的问题

    页面元素 <input type="text" ref="elInput"/> <div style="margin-top:20p ...

  5. mysql每个表总的索引大小

    /* 指定的数据库 每个表的索引 不包含主键索引的大小*/ ,),,),'mb') as index_size from information_schema.tables where TABLE_S ...

  6. web——前后端通信原理

    前端向后台传输数据: 传输方法:post  get 区别: (1)get:用于从服务器获取数据,将参数数据队列加到提交表单的ACTION属性所指的URL中,值和表单内各个字段一一对应,在URL中可以看 ...

  7. Spring Cloud学习笔记【九】配置中心Spring Cloud Config

    Spring Cloud Config 是 Spring Cloud 团队创建的一个全新项目,用来为分布式系统中的基础设施和微服务应用提供集中化的外部配置支持,它分为服务端与客户端两个部分.其中服务端 ...

  8. ArcGIS api for javascript——地图配置-增加一个调试控制台<

    描述 该示例展示了在应用中如何包含一个Dojo调试控制台.可以写信息到控制台来记录发生的事件和应用运行时设置的属性.当调试Internet Explorer浏览器的错误时这是极为有帮助的.(对Fire ...

  9. C++调用Lua的性能測试

    游戏服务器经典的架构就是C++和Lua的结合,C++开发主体框架.Lua实现一些复杂的逻辑.我们都知道Lua是一种很快的语言.可是究竟有多块.我们測试下看看. C++调用Lua的性能測试.发现不正确的 ...

  10. 浏览器下载img标签Base64图片

    https://blog.csdn.net/qq_42076140/article/details/82113622    原文地址 <a href="javascript:downl ...