id=3254">http://poj.org/problem?

id=3254

题目大意:

一个农民有n行m列的地方,每一个格子用1代表能够种草地,而0不能够。放牛仅仅能在有草地的。可是相邻的草地不能同一时候放牛。 问总共同拥有多少种方法。

思路:

状态压缩的DP。

能够用二进制数字来表示放牧情况并推断该状态是否满足条件。

这题的限制条件有两个:

1.草地限制。

2.相邻限制。

对于草地限制,由于输入的时候1是能够种草地的。

以”11110“草地分析,就仅仅有最后一个是不能够种草的。

取反后得00001  。(为啥取反?不取反能够举出反例的)

如果有个状态10101 这个不相邻,可是10101  & 00001 !=0 表示有冲突。

对于相邻限制,又分为同一行的限制和上下两行的限制。

同一行限制能够一開始把相邻的情况都去掉,符合的存进数组,有助于降低状态数。 这样这个也攻克了。

上下两行相与就可以。

如(如果均可种草)

10101 & 00100!=0 也是有冲突的。

OK上代码。

C++:

#include<cstdio>
#include<cstring>
const int mod = 100000000;
const int MAXN = 1 << 12;
int map[20], status[MAXN], dp[20][MAXN];
int len; int main()
{
int n, m;
while (~scanf("%d%d", &n, &m))
{
for (int i = 0; i < n; i++)
{
for (int j = 0; j < m; j++)
{
int temp;
scanf("%d", &temp);
if (!temp)
map[i] = map[i] | (1 << (m - j - 1));
}
} len = 0;
int tot = 1 << m;
//全部状态
for (int i = 0; i < tot; i++)
{
//左移右移均可
if ((i &(i >> 1)) == 0) status[len++] = i;
}
//初始化第一行
memset(dp, 0, sizeof(dp));
for (int i = 0; i <len ; i++)
{
if ((status[i] & map[0]) == 0)
dp[0][i] = 1;
} for (int i = 1; i < n; i++)
{
for (int j = 0; j < len; j++)
{
if ((status[j] & map[i-1]) != 0) continue;
for (int k = 0; k < len; k++)
{
if ((status[k] & map[i]) != 0) continue;
if ((status[k] & status[j]) != 0) continue;
dp[i][k] = (dp[i][k] +dp[i - 1][j] )% mod;
}
}
}
int ans = 0;
for (int i = 0; i < len; i++)
ans = (ans + dp[n - 1][i]) % mod;
printf("%d\n", ans);
}
return 0;
}

JAVA:

import java.util.Scanner;

public class Main {

	final static int mod = 100000000;
final static int MAXN = 1 << 12;
static int[] map = new int[20];
static int[] status = new int[MAXN];
static int[][] dp = new int[20][MAXN];
static int len; public static void main(String[] args) {
Scanner cin = new Scanner(System.in);
int n, m;
while (cin.hasNext()) {
n = cin.nextInt();
m = cin.nextInt();
init(n,m); for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) {
int temp = cin.nextInt();
if (temp ==0)
map[i] = (map[i] | (1 << (m - j - 1)));
} int tot = 1 << m;
len = 0;
for (int i = 0; i < tot; i++)
if ((i & (i << 1)) == 0) {
status[len++] = i;
} for (int i = 0; i < len; i++) {
if ((map[0] & status[i]) == 0)
dp[0][i] = 1;
} for (int i = 1; i < n; i++) {
for (int j = 0; j < len; j++) {
if ((map[i - 1] & status[j]) != 0)
continue;
for (int k = 0; k < len; k++) {
if ((map[i] & status[k]) != 0)
continue;
if ((status[j] & status[k]) != 0)
continue;
dp[i][k] = (dp[i][k] + dp[i - 1][j]) % mod;
}
}
}
int ans = 0;
for (int i = 0; i < len; i++) {
ans = (ans + dp[n - 1][i]) % mod;
}
System.out.println(ans);
}
} public static void init(int n,int m)
{
int tot=1<<m;
for(int i=0;i<n;i++)
{
map[i]=0;
for(int j=0;j<tot;j++)
dp[i][j]=0;
} }
}

POJ 3254 Corn Fields 状态压缩DP (C++/Java)的更多相关文章

  1. POJ 3254 Corn Fields(状态压缩DP)

    Corn Fields Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4739   Accepted: 2506 Descr ...

  2. POJ 3254 Corn Fields (状态压缩DP)

    题意:在由方格组成的矩形里面种草,相邻方格不能都种草,有障碍的地方不能种草,问有多少种种草方案(不种也算一种方案). 分析:方格边长范围只有12,用状态压缩dp好解决. 预处理:每一行的障碍用一个状态 ...

  3. POJ 3254. Corn Fields 状态压缩DP (入门级)

    Corn Fields Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9806   Accepted: 5185 Descr ...

  4. poj - 3254 Corn Fields (状态压缩dp入门)

    http://poj.org/problem?id=3254 参考:http://blog.csdn.net/accry/article/details/6607703 农夫想在m*n的土地上种玉米, ...

  5. POJ 3254 Corn Fields状态压缩DP

    下面有别人的题解报告,并且不止这一个状态压缩题的哦···· http://blog.csdn.net/accry/article/details/6607703 下面是我的代码,代码很挫,绝对有很大的 ...

  6. [ACM] POJ 3254 Corn Fields(状态压缩)

    Corn Fields Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8062   Accepted: 4295 Descr ...

  7. poj 3254 Corn Fields 国家压缩dp

    意甲冠军: 要在m行n陆行,有一些格您可以种树,别人做不到的.不相邻的树,我问了一些不同的共同拥有的法律. 分析: 从后往前种,子问题向父问题扩展,当种到某一格时仅仅有他和他后面的n-1个格子的情况对 ...

  8. POJ 3254 Corn Fields 状态压缩

    这题对我真的非常难.实在做不出来,就去百度了,搜到了一种状压DP的方法.这是第一种 详细见凝视 #include <cstdio> #include <cstring> #in ...

  9. poj 3254 Corn Fields_状态压缩dp

    感谢:http://www.cnblogs.com/ka200812/archive/2011/08/11/2135607.html 让我搞懂了. #include <iostream> ...

随机推荐

  1. THINKPHP实现搜索分页保留搜索条件

    使用tp自带的分页类时,里面自带了POST查询条件保留机制,但是之针对于普通的map一维数组,如果包含like,gt等等比较复杂的查询条件则力不从心了. 带入查询条件 如果是POST方式查询,如何确保 ...

  2. 解决ORA-28002: 密码7天之后过期办法

    https://www.douban.com/group/topic/46177516/ https://yq.aliyun.com/ziliao/42484 http://blog.csdn.net ...

  3. 讲一讲java异常及自定义异常

    1.异常,说白了.两种,一种就是就是不能让代码通过编译的异常.另一种就是程序运行期间出现的异常.异常就是错误,只要出现异常,程序就不会向下运行了.就不会执行后面的代码了.这时候就可以通过显示statc ...

  4. java发送邮件带附件

    package com.smtp; import java.util.Vector; public class MailBean { private String to; // 收件人 private ...

  5. Android开发之视图动画基础

    Android的animation由四种类型组成 XML中  alpha 渐变透明度动画效果 scale 渐变尺寸伸缩动画效果 translate 画面转换位置移动动画效果 rotate 画面转移旋转 ...

  6. nyoj--236--心急的C小加(动态规划&&LIS)

    心急的C小加 时间限制:1000 ms  |  内存限制:65535 KB 难度:4 描述 C小加有一些木棒,它们的长度和质量都已经知道,需要一个机器处理这些木棒,机器开启的时候需要耗费一个单位的时间 ...

  7. nyoj--18--The Triangle(dp水题)

    The Triangle 时间限制:1000 ms  |  内存限制:65535 KB 难度:4 描述 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5 (Figure 1) Figure ...

  8. Go语言结构体转json的坑

    Go语言结构体转json的坑 标签(空格分隔): go json.Marshal() JSON输出的时候必须注意,只有导出的字段(首字母是大写)才会被输出,如果修改字段名,那么就会发现什么都不会输出, ...

  9. android之handler机制深入解析

    一.android中需要另开线程处理耗时.网络的任务,但是有必须要在UI线程中修改组件.这样做是为了: ①只能在UI线程中修改组件,避免了多线程造成组件显示混乱 ②不使用加锁策略是为了提高性能,因为a ...

  10. hiho 1617 - 方格取数 - dp

    题目链接 描述 给定一个NxN的方格矩阵,每个格子中都有一个整数Aij.小Hi和小Ho各自选择一条从左上角格子到右下角格子的路径,要求路径中每一步只能向右或向下移动,并且两条路径不能相交(除了左上右下 ...