http://www.lydsy.com/JudgeOnline/problem.php?id=2961 (题目链接)

题意

  按照一定的顺序给出一些圆和一些点,对于每一个点问是否在所有圆内。

Solution

  我算是明白计算几何题是有多蛋疼了。

  圆包含点$(x_0,y_0)$的条件:$$x*x+y*y>=(x-x_0)*(x-x_0)+(y-y_0)*(y-y_0)$$

$$-2x_0+x_0^2+y_0^2<=2y_0y$$

  题目只说圆心的纵坐标大于$0$,气的我吐出一口老血。所以根据$y_0$的正负,分类讨论,每种情况都是一个半平面,直线的斜率为$-x_0/y_0$,然后我们维护一个上凸包和一个下凸包对询问进行更新,CDQ分治求解就可以了。

细节

  各种细节蛋疼死了,横坐标相等斜率特判,而且是有向线段的斜率两个点的顺序不能乱写。一开始还把斜截式写成了一般式搞了半天我就说怎么不对。

代码

// bzoj2961
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define LD long double
#define inf 1e40
#define eps 1e-10
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout)
using namespace std; const int maxn=500010;
int n,qu[maxn],st[maxn],ans[maxn];
struct data {LD x,y,k;int op,id;}q[maxn],nq[maxn]; bool cmpk(data a,data b) {return a.k<b.k;}
bool cmpid(data a,data b) {return a.id<b.id;}
LD slope(data a,data b) {
return fabs(a.x-b.x)<=eps ? inf*(a.y<b.y ? 1 : -1) : (b.y-a.y)/(b.x-a.x); //mdzz一定要写a.y<b.y而不是a.y>b.y,有向线段
}
LD dis(int x,int y) {
return (q[x].x-q[y].x)*(q[x].x-q[y].x)+(q[x].y-q[y].y)*(q[x].y-q[y].y);
}
void solve(int l,int r) {
if (l==r) return;
int mid=(l+r)>>1,l1=l,l2=mid+1,top=0,h=1,t=0;
for (int i=l;i<=r;i++) q[i].id<=mid ? nq[l1++]=q[i] : nq[l2++]=q[i];
for (int i=l;i<=r;i++) q[i]=nq[i];
solve(l,mid);
for (int i=l;i<=mid;i++) if (!q[i].op) {
while (top>1 && slope(q[st[top-1]],q[st[top]])<slope(q[st[top]],q[i])+eps) top--;
st[++top]=i;
while (h<t && slope(q[qu[t-1]],q[qu[t]])>slope(q[qu[t]],q[i])-eps) t--;
qu[++t]=i;
}
for (int i=mid+1;i<=r;i++) if (q[i].op) {
if (q[i].y<0) {
while (top>1 && slope(q[st[top-1]],q[st[top]])<q[i].k) top--;
if (top) ans[q[i].id]&=(dis(i,st[top])<=dis(st[top],0)+eps); //判断条件一定要加
}
else {
while (h<t && slope(q[qu[h]],q[qu[h+1]])<q[i].k) h++;
if (h<=t) ans[q[i].id]&=(dis(i,qu[h])<=dis(qu[h],0)+eps); //判断条件一定要加
}
}
solve(mid+1,r);
for (int i=l,j=mid+1,k=l;i<=mid || j<=r;) {
if (j>r || (i<=mid && q[i].x<q[j].x)) nq[k++]=q[i++];
else nq[k++]=q[j++];
}
for (int i=l;i<=r;i++) q[i]=nq[i];
}
int main() {
scanf("%d",&n);
for (int i=1;i<=n;i++) {
scanf("%d%Lf%Lf",&q[i].op,&q[i].x,&q[i].y);
if (q[i].op) q[i].k=-q[i].x/q[i].y;
ans[i]=1;q[i].id=i;
}
sort(q+1,q+1+n,cmpk);
solve(1,n);
sort(q+1,q+1+n,cmpid);
for (int flag=0,i=1;i<=n;i++) {
if (q[i].op) puts(flag && ans[q[i].id] ? "Yes" : "No");
else flag=1;
}
return 0;
}

【bzoj2961】 共点圆的更多相关文章

  1. BZOJ2961: 共点圆

    好久没发了 CDQ分治,具体做法见XHR的论文… /************************************************************** Problem: 29 ...

  2. BZOJ2961 共点圆[CDQ分治]

    题面 bzoj 其实就是推一下圆的式子 长成这个样子 假设要查询的点是(x, y) 某个圆心是(p, q) \((x - p)^2 + (y - q)^2 \leq p^2 + q^2\) 变成 \( ...

  3. bzoj2961 共点圆 bzoj 4140

    题解: 比较水的一道题 首先我们化简一下式子发现是维护xxo+yyo的最值 显然是用凸包来做 我们可以直接用支持插入删除的凸包 也是nlogn的 因为没有强制在线,我们也可以cdq,考虑前面一半对答案 ...

  4. bzoj2961 共点圆 (CDQ分治, 凸包)

    /* 可以发现可行的圆心相对于我们要查询的点是在一个半平面上, 然后我们要做的就是动态维护凸壳然后用这个半平面去切它 看看是否是在合法的那一面 然后cdq分治就可以了 代码基本是抄的, */ #inc ...

  5. BZOJ2961: 共点圆(CDQ分治+凸包)

    题面 传送门 题解 这题解法真是多啊--据说可以圆反演转化为动态插入半平面并判断给定点是否在半平面交中,或者化一下改成给定点判断是否所有点都在某一个半平面内-- 鉴于圆反演我也不会,这里讲一下直接推的 ...

  6. [BZOJ2961]共点圆-[凸包+cdq分治]

    Description 传送门 Solution 考虑对于每一个点: 设圆的坐标为(x,y),点的坐标为(x0,y0).依题意得,当一个点在圆里,需要满足(x-x0)2+(y-y0)2<=x2+ ...

  7. [BZOJ2961] 共点圆 [cdq分治+凸包]

    题面 BZOJ传送门 思路 首先考虑一个点$(x_0,y_0)$什么时候在一个圆$(x_1,y_1,\sqrt{x_1^2+y_1^2})$内 显然有:$x_1^2+y_1^2\geq (x_0-x_ ...

  8. 【BZOJ2961】共点圆(CDQ分治)

    [BZOJ2961]共点圆(CDQ分治) 题面 BZOJ 题解 设询问点\((x,y)\),圆心是\((X,Y)\) 那么如果点在园内的话就需要满足 \((X-x)^2+(Y-y)^2\le X^2+ ...

  9. 【BZOJ4140】共点圆加强版(二进制分组)

    [BZOJ4140]共点圆加强版(二进制分组) 题面 BZOJ 题解 我卡精度卡了一天.... 之前不强制在线的做法是\(CDQ\)分治,维护一个凸壳就好了. 现在改成二进制分组,每次重建凸壳就好了. ...

随机推荐

  1. C语言学习之联合类型

    前言 联合(union)是一种特殊的数据类型,和结构体很像,结构体各成员变量有自己独立的存储位置,而联合的成员变量共享同一片存储区域,因此联合变量再一个时刻只能保存它的某一个成员的值. 联合的定义和初 ...

  2. Android与Libgdx环境配置

    此处所说的是基于windows和android版本的libgdx环境配置. 1. 下载所需软件 JDK 1.7. 下载地址: window x86版本地址: http://www.oracle.com ...

  3. effective c++ 笔记 (18-22)

    //---------------------------15/04/06---------------------------- //#18 让接口容易被正确使用,不易被误用 { //  1:为了防 ...

  4. http to https

    https://www.cnblogs.com/powertoolsteam/p/http2https.html

  5. 巧用cheerio重构grunt-inline

    grunt-inline是楼主之前写的一个插件,主要作用是把页面带了__inline标记的资源内嵌到html页面去.比如下面的这个script标签. <script src="main ...

  6. 软件测试----H模型

    H模型将测试活动完全独立出来,形成一个完整的流程,同时将测试准备和测试执行清晰表现出来. 测试流程: --测试准备:所有测试活动的准备判断是否到测试就绪点. --测试就绪点:测试准入准则,即是否可以开 ...

  7. 小白之selenium+python关于cookies绕开登录2

    首先,由于新开始在博客园中写随笔,可能在内容的布局方面就不太懂,导致布局很丑,各位见谅,但是字还是原来的那字,内容还是原来的内容,少了点包装, 下面是对cookie的扩展知识 1.配置文件存储在哪里? ...

  8. 更改jenkins的默认工作空间并迁移插件和配置数据

    最近刚使用阿里云ECS centos服务器,购买的是40G的系统盘,60G的数据盘. 昨天在查看服务器磁盘空间的时候,偶然发现 /dev/vda1 下面40G的空间已使用17G, 因为服务器才开始使用 ...

  9. Istio如何使用相同的端口访问网格外服务

    1.1.背景 写这篇文章的目的是为了说明以下问题:如何使用TCP协议相同的端口访问网格外多个服务? 这是最近直播的时候有一个同学提出的,当时我没有完全明白,“访问多集群” 的意思.后来仔细思考了一下, ...

  10. Windows 7上安装配置TensorFlow-GPU运算环境

    Windows 7上安装配置TensorFlow-GPU运算环境 1. 概述 在深度学习实践中,对于简单的模型和相对较小的数据集,我们可以使用CPU完成建模过程.例如在MNIST数据集上进行手写数字识 ...