题目来源: CodeForces
基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题
 收藏
 关注

现在你要竞选一个县的县长。你去对每一个选民进行了调查。你已经知道每一个人要选的人是谁,以及要花多少钱才能让这个人选你。现在你想要花最少的钱使得你当上县长。你当选的条件是你的票数比任何一个其它候选人的多(严格的多,不能和他们中最多的相等)。请计算一下最少要花多少钱。

Input
单组测试数据。
第一行有一个整数n (1 ≤ n ≤ 10^5),表示这个县的选民数目。
接下来有n行,每一行有两个整数ai 和 bi (0 ≤ ai ≤ 10^5; 0 ≤ bi ≤ 10^4),表示第i个选民选的是第ai号候选人,想要让他选择自己就要花bi的钱。你是0号候选人(所以,如果一个选民选你的话ai就是0,这个时候bi也肯定是0)。
Output
输出一个整数表示花费的最少的钱。
Input示例
5
1 2
1 2
1 2
2 1
0 0
Output示例
3

思路:
线段树+扫描线思想
实现代码:
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
const ll M = 1e5 + ;
vector<ll>g[M];
vector<ll>rk[M];
ll sum[M<<],num[M<<];
void pushup(ll rt){
num[rt] = num[rt<<] + num[rt<<|];
sum[rt] = sum[rt<<|] + sum[rt<<];
} void update(ll p,ll l,ll r,ll rt){
if(l == r){
sum[rt] += l;
num[rt] ++;
return ;
}
ll m = (l + r) >> ;
if(p <= m) update(p,lson);
else update(p,rson);
pushup(rt);
} ll query(ll p,ll l,ll r,ll rt){
if(l == r)
return l*p;
ll m = (l + r) >> ;
if(p == num[rt<<]) return sum[rt<<];
else if(p < num[rt<<]) return query(p,lson);
else return sum[rt<<] + query(p - num[rt<<],rson);
} int main()
{
ios::sync_with_stdio();
cin.tie(); cout.tie();
ll n,u,v;
ll mx = ,ans = ;
cin>>n;
for(ll i = ;i <= n;i ++){
cin>>u>>v;
if(v == ) continue;
ans += v;
mx = max(mx,v);
g[u].push_back(v);
}
for(ll i = ;i <= M;i ++){
if(g[i].size()){
sort(g[i].begin(),g[i].end(),greater<ll>());
for(ll j = ;j < g[i].size();j ++){
rk[j].push_back(g[i][j]);
}
}
}
ll nn = n;
ll minn = ans,cnt = ;
for(ll i = ;i < n;i ++){
nn -= rk[i].size();
if(rk[i].size()==) continue;
for(ll j = ;j < rk[i].size();j ++){
ans -= rk[i][j];
update(rk[i][j],,mx,);
}
if(nn <= i+){
cnt = query(min(n,i+-nn),,mx,);
}
minn = min(minn,ans+cnt);
}
cout<<minn<<endl;
}

51nod 1494 选举拉票 (线段树+扫描线)的更多相关文章

  1. 51nod 1494 选举拉票 | 线段树

    51nod1494 选举拉票 题面 现在你要竞选一个县的县长.你去对每一个选民进行了调查.你已经知道每一个人要选的人是谁,以及要花多少钱才能让这个人选你.现在你想要花最少的钱使得你当上县长.你当选的条 ...

  2. 51nod 1208 窗上的星星 | 线段树 扫描线

    51nod 1208 Stars In Your Window 题面 整点上有N颗星星,每颗星星有一个亮度.用一个平行于x轴和y轴,宽为W高为H的方框去套星星.套住的所有星星的亮度之和为S(包括边框上 ...

  3. 51nod 1206 Picture 矩形周长求并 | 线段树 扫描线

    51nod 1206 Picture 矩形周长求并 | 线段树 扫描线 #include <cstdio> #include <cmath> #include <cstr ...

  4. 【Codeforces720D】Slalom 线段树 + 扫描线 (优化DP)

    D. Slalom time limit per test:2 seconds memory limit per test:256 megabytes input:standard input out ...

  5. Codeforces VK CUP 2015 D. Closest Equals(线段树+扫描线)

    题目链接:http://codeforces.com/contest/522/problem/D 题目大意:  给你一个长度为n的序列,然后有m次查询,每次查询输入一个区间[li,lj],对于每一个查 ...

  6. 【POJ-2482】Stars in your window 线段树 + 扫描线

    Stars in Your Window Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11706   Accepted:  ...

  7. HDU 4419 Colourful Rectangle --离散化+线段树扫描线

    题意: 有三种颜色的矩形n个,不同颜色的矩形重叠会生成不同的颜色,总共有R,G,B,RG,RB,GB,RGB 7种颜色,问7种颜色每种颜色的面积. 解法: 很容易想到线段树扫描线求矩形面积并,但是如何 ...

  8. BZOJ-3228 棋盘控制 线段树+扫描线+鬼畜毒瘤

    3228: [Sdoi2008]棋盘控制 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 23 Solved: 9 [Submit][Status][D ...

  9. BZOJ-3225 立方体覆盖 线段树+扫描线+乱搞

    看数据范围像是个暴力,而且理论复杂度似乎可行,然后被卡了两个点...然后来了个乱搞的线段树+扫描线.. 3225: [Sdoi2008]立方体覆盖 Time Limit: 2 Sec Memory L ...

随机推荐

  1. 带您详细解读分布式文件系统HDFS

    一.HDFS的由来: 本地系统:一个节点作为系统,以前数据是存放在本地文件系统上的,但本地文件系统存在两个问题:1.本地节点存储容量不够大:2.本地节点会坏,数据不够安全.这时,人们开始利用闲置的计算 ...

  2. sql查询语句示例

    今天没事又专门学习了一下sql查询语句,个人感觉太重要了,于是就找了网上的一个示例自己练了起来,感觉学到了很多,下面跟大家分享一下sql查询语句的示例操作. 首先,我建了5张表,分别如下: (a)学生 ...

  3. Command and Query Responsibility分离模式

    CQRS模式,就是命令和查询责任分离模式. CQRS模式通过使用不同的接口来分离读取数据和更新数据的操作.CQRS模式可以最大化性能,扩展性以及安全性,还会为系统的持续演化提供更多的弹性,防止Upda ...

  4. [2016北京集训测试赛17]crash的游戏-[组合数+斯特林数+拉格朗日插值]

    Description Solution 核心思想是把组合数当成一个奇怪的多项式,然后拉格朗日插值..:哦对了,还要用到第二类斯特林数(就是把若干个球放到若干个盒子)的一个公式: $x^{n}=\su ...

  5. MIT一牛人对数学在机器学习中的作用给的评述

    MIT一牛人对数学在机器学习中的作用给的评述 转载自http://my.oschina.net/feedao/blog/52252,不过这个链接也是转载的,出处已经无从考证了.   感觉数学似乎总是不 ...

  6. 4字节emoji表情对应的Unicode编码获取和编码转换

    GitHub Flavored Markdown 今天研究了一天Markdown移动端和pc端统一实现方式,由于以前有搞过移动端富文本编辑器,搞Markdown简单多了: 其中GFM的表情语法不错,比 ...

  7. Microsoft Dynamics CRM 增删改子表汇总子表的某个字段到主表的某个字段(通用插件)

    背景 经常有某个汇总子表的数量到主表的总数量,或者汇总子表的总价到主表的总价这种需求. 传统的做法: 1.就是为每个子表实体单独写成一个插件,但是这样不好复用. 2.主表的汇总字段是汇总货币类型,但是 ...

  8. okhttp3.4.1+retrofit2.1.0实现离线缓存

    关于Retrofit+OkHttp的强大这里就不多说了,还没了解的同学可以自行去百度.这篇文章主要讲如何利用Retrofit+OkHttp来实现一个较为简单的缓存策略:即有网环境下我们请求数据时,如果 ...

  9. Js_checkbox的互斥

    function ck_click(obj) { var ck_20 = document.getElementById("ck_20"); var ck_25 = documen ...

  10. Linux Socket 编程简介

    在 TCP/IP 协议中,"IP地址 + TCP或UDP端口号" 可以唯一标识网络通讯中的一个进程,"IP地址+端口号" 就称为 socket.本文以一个简单的 ...