Inviting Friends(hdu3244 && zoj3187)完全背包+二分
Inviting Friends
Time Limit: 1 Second Memory Limit: 32768 KB
You want to hold a birthday party, inviting as many friends as possible, but you have to prepare enough food for them. For each person, you need n kinds of ingredient to make good food. You can use the ingredients in your kitchen, or buy some new ingredient packages. There are exactly two kinds of packages for each kind of ingredient: small and large.
We use 6 integers to describe each ingredient: ,x, y, s1, p1, s2, p2, where x is the amount (of this ingredient) needed for one person, y is the amount currently available in the kitchen, s1 and p1 are the size (the amount of this ingredient in each package) and price of small packages, s2 and p2 are the size and price of large packages.
Given the amount of money you can spend, your task is to find the largest number of person who can serve. Note that you cannot buy only part of a package.
Input
There are at most 10 test cases. Each case begins with two integers n and m (1 <= n <= 100, 1 <= m <= 100000), the number of kinds of ingredient, and the amount of money you have. Each of the following n lines contains 6 positive integers x, y, s1, p1, s2, p2 to describe one kind of ingredient (10 <= x <= 100, 1 <= y <= 100, 1 <= s1 <= 100, 10 <= p1 <= 100, s1 < s2 <= 100, p1 < p2 <= 100). The input ends with n = m = 0.
Output
For each test case, print the maximal number of people you can serve.
Sample Input
2 100
10 8 10 10 13 11
12 20 6 10 17 24
3 65
10 5 7 10 13 14
10 5 8 11 14 15
10 5 9 12 15 16
0 0
Sample Output
5
2 题意:邀请朋友,要准备n种原料,每种原料有6个参数:x,y,s1,p1,s2,p2。表示的含义分别是:对于第i种原料,每个人的需求量是x,现在还剩下y的量,每种原料有2种包装,一种小包的,一种打包的,每一小包的量是s1,价格是p1,打包的量是s2,价格是p2。现在给你n种原料和m的钱,求最多能请几个人。 解题思路:二分法枚举人数,然后再根据人数判断能不能满足那么确定人数之后,就要根据人数求出每种原料的最少花钱,看会不会超支对于没一个原料都求一次完全背包,背包容量就是你需要的数量加上大包的容量,然后在need到上限间找出最小值就OK 完全背包+二分: 我正在学习。。。。 题目连接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3187 或
http://acm.hdu.edu.cn/showproblem.php?pid=3244
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std; int n,m;
const int maxn = ;
const int inf = 0x3f3f3f3f; struct node
{
int s1,s2;
int p1,p2;
int x,y; }t[maxn]; int cal_r()
{
int ret=inf;
for(int i=;i<=n;i++)
{
if(t[i].s1*1.0/t[i].p1 >= t[i].s2*1.0/t[i].p2)
{
int tmp = (m/t[i].p1*t[i].s1)+t[i].y;//都买一个看有多少
int p = tmp/t[i].x;//人数;
ret=min(ret,p);//找最小的最大人数
}
else
{
int tmp = (m/t[i].p2*t[i].s2)+t[i].y;
int p = tmp/t[i].x;
ret=min(ret,p);
}
}
return ret;//返回最小的最大人数;
} int dp[+]; int cal_need(int i,int need)
{
int w[],c[];
c[]=t[i].p1;
w[]=t[i].s1;
c[]=t[i].p2;
w[]=t[i].s2; int V=need+t[i].s2; for(int i=;i<=V;i++)
dp[i]=inf; dp[]=; for(int i=;i<;i++)//完全背包
{
for(int v=w[i];v<=V;v++)
dp[v]=min(dp[v],dp[v-w[i]]+c[i]);
} int ret = inf;
for(int i=need;i<=V;i++)
ret = min(ret,dp[i]); return ret;
} bool judge(int k)//判断人数是否符合购买力。。。
{
int s=;
for(int i=;i<=n;i++)
{
int need = t[i].x*k-t[i].y;
if(need<=)
continue;
int tmp = cal_need(i,need);//需要多少钱;
s+=tmp;
if(s>m)
return false;
}
return true;
} int main()
{
while(~scanf("%d%d",&n,&m) && n+m)
{
for(int i=;i<=n;i++)
scanf("%d%d%d%d%d%d",&t[i].x,&t[i].y,&t[i].s1,&t[i].p1,&t[i].s2,&t[i].p2);
int r=cal_r();
int l=;
int ans = ;
//printf("r %d\n",r);
while(l<=r)
{
int mid=(l+r)>>;
if(judge(mid))
{
ans=mid;
l=mid+;
}
else
r=mid-;
}
printf("%d\n",ans);
}
return ;
}
背包!加油加油!!!!!
Inviting Friends(hdu3244 && zoj3187)完全背包+二分的更多相关文章
- POJ3111 K Best(另类背包+二分+变态精度)
POJ3111 K Best,看讨论区说数据有点变态,精度要求较高,我就直接把循环写成了100次,6100ms过,(试了一下30,40都会wa,50是4000ms) 第一次在POJ上看到下面这种东西还 ...
- caioj 1086 动态规划入门(非常规DP10:进攻策略)
一开始看到题目感觉很难 然后看到题解感觉这题贼简单,我好像想复杂了 就算出每一行最少的资源(完全背包+二分)然后就枚举就好了. #include<cstdio> #include<a ...
- Inviting Friends(二分+背包)
Inviting Friends Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) To ...
- U - Inviting Friends HDU - 3244(二分答案 + 完全背包)
U - Inviting Friends HDU - 3244 You want to hold a birthday party, inviting as many friends as possi ...
- P2370 yyy2015c01的U盘(二分+背包)
思路:先说一下题意吧.就是给你n个文件大小为v,价值为c, 但是硬盘的大小为S, 而且要存的总价值大于等于p.问每次传输k大小的文件.问k的最大值是多少? 我们以k为二分对象. 直接讲检验函数吧. 假 ...
- 分数规划模板(洛谷P4377 [USACO18OPEN]Talent Show)(分数规划,二分答案,背包)
分数规划是这样一个东西: 给定若干元素,每个元素有两个属性值\(a_i,b_i\),在满足题目要求的某些限制下选择若干元素并求出\(\frac{\sum a}{\sum b}\)的最大值. 如果没有限 ...
- CF-1055E:Segments on the Line (二分&背包&DP优化)(nice problem)
You are a given a list of integers a 1 ,a 2 ,…,a n a1,a2,…,an and s s of its segments [l j ;r j ] [ ...
- 【8.31校内测试】【找规律二分】【DP】【背包+spfa】
打表出奇迹!表打出来发现了神奇的规律: 1 1 2 2 3 4 4 4 5 6 6 7 8 8 8 8 9 10 10 11 12 12 12 13 14 14 15 16 16 16 16 16.. ...
- bzoj 4753: [Jsoi2016]最佳团体【01分数规划+二分+树上背包】
01分数规划,二分答案然后把判别式变成Σp[i]-Σs[i]*mid>=0,然后树上背包判断,设f[i][j]为在i点子树里选j个的最大收益,随便背包一下就好 最丧病的是神卡常--转移的时候要另 ...
随机推荐
- EF查询某个时间段内的数据遇到坑!
第一个问题 var res = pwDb.Set<WorkInfo>().Where(t => t.WorkTime > startTime && t.Work ...
- 简谈Entity Framework的优缺点
Entity Framework简介 Entity Framework的全称为 ADO.NET Entity Framework ,简称为EF, 是微软以ADO.NET为基础发展出来的实体框架,早期被 ...
- 【BZOJ1052】 [HAOI2007]覆盖问题
BZOJ1052 [HAOI2007]覆盖问题 前言 小清新思维题. 最近肯定需要一些思维题挽救我这种碰到题目只会模板的菜鸡. 这题腾空出世? Solution 考虑一下我们二分答案怎么做? 首先转换 ...
- MySQL 中文字符集排序
SELECT 字段名 FROM 表 ORDER BY CONVERT(字段名 USING gbk) ASC;
- 一次Java解析数独的经历
1. 背景 中午下楼去吃饭,电梯里看到有人在玩数独,之前也玩过,不过没有用程序去解过,萌生了一个想法,这两天就一直想怎么用程序去解一个数独.要去解开一个数独,首先要先了解数独的游戏规则,这样才能找到对 ...
- iOS开发-带Placeholder的UITextView实现
iOS中UITextField带有PlaceHolder属性,可以方便用于提示输入.但是同样可以进行文本输入的UITextView控件则没有PlaceHolder属性,还是有些不方便的,尤其是对于略带 ...
- postgresql-hdd,ssd,效率
既有ssd又有hdd是将数据存储到ssd还是将索引存储到ssd的效率更高呢? 一种说法是索引是随机扫描,将索引放入ssd效率会增高, 一种说法是将数据放入ssd效率更高 最好的情况是将数据和索引都 ...
- POJ 2562
#include<iostream> #include<algorithm> #define MAXN 15 using namespace std; //int rec[MA ...
- MapReduce中的partitioner
1.日志源文件: 1363157985066 13726230503 00-FD-07-A4-72-B8:CMCC 120.196.100.82 i02.c.aliimg.com 24 27 2481 ...
- makemigrations migrate
教程 如何重置迁移 (图片:https://www.pexels.com/photo/sky-flying-animals-birds-1209/) Django迁移系统的开发和优化使其能够进行大量迁 ...