2190 有理逼近

 时间限制: 1 s
 空间限制: 32000 KB
 题目等级 : 黄金 Gold
 
题目描述 Description

对于一个素数P,我们可以用一系列有理分数(分子、分母都是不大于N的自然数)来逼近sqrt(p),例如P=2,N=5的时候:1/1<5/4<4/3<sqrt(2)<3/2<5/3<2/1。
任 务 :
给定P、N(N>sqrt(p)),求X、Y、U、V,使x/y<sqrt(p)<u/v且x/y与sqrt(p)之间、sqrt(p)与u/v之间都不能再插入满足题意的有理分数。

输入描述 Input Description

输入文件的第一行为P、N

输出描述 Output Description

输出文件只有一行,格式为“X/Y U/V”。注意,答案必须是既约的,也就是说分子、分母的最大公约数必须等于1。

样例输入 Sample Input

样例1:
2 5
样例2:
5 100

样例输出 Sample Output

样例1:
4/3 3/2

样例2:
38/17 85/38

数据范围及提示 Data Size & Hint

P、N<30000

——————————————————我是分割线————————————————————————

思路好题

因为要求(i/j)≈sqrt(p)

所以转化为:对于每一个i,求j≈(i/sqrt(p))

这样就极大地减小了循环量。

最后一定要注意精度!注意精度!注意精度!

(不明白精度怎么办的请移步:http://www.cnblogs.com/SBSOI/p/5957321.html

 /*
Problem:
OJ:
User: S.B.S.
Time:
Memory:
Length:
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#include<cstdlib>
#include<iomanip>
#include<cassert>
#include<climits>
#include<functional>
#include<bitset>
#include<vector>
#include<list>
#include<map>
#define F(i,j,k) for(int i=j;i<=k;i++)
#define M(a,b) memset(a,b,sizeof(a))
#define FF(i,j,k) for(int i=j;i>=k;i--)
#define maxn 10001
#define inf 0x3f3f3f3f
#define maxm 1001
#define mod 998244353
#define eps 1e-7
//#define LOCAL
using namespace std;
int read(){
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,m,p;
int cur1,cur2;
double mn=inf;
inline int gcd(int a,int b)
{
return b ? gcd(b,a%b) : a;
}
int main()
{
// std::ios::sync_with_stdio(false);//cout<<setiosflags(ios::fixed)<<setprecision(1)<<y;
#ifdef LOCAL
freopen("data.in","r",stdin);
freopen("data.out","w",stdout);
#endif
p=read();n=read();
FF(i,n,){
F(j,floor(i/sqrt(p)),ceil(i/sqrt(p)))
{
if(i==j||j<=||j>n) continue;
if(sqrt(p)>(double)i/j&&sqrt(p)-(double)i/j<=mn)
{
cur1=i;cur2=j;
mn=sqrt(p)-(double)i/j;
}
}
}
int aa=gcd(cur1,cur2);
printf("%d/%d ",cur1/aa,cur2/aa);
// cout<<cur1/aa<<"/"<<cur2/aa<<" ";
mn=inf;
FF(i,n,){
F(j,floor(i/sqrt(p)),ceil(i/sqrt(p)))
{
if(i==j||j<=||j>n) continue;
if(sqrt(p)<(double)i/j&&(double)i/j-sqrt(p)<=mn)
{
cur1=i;cur2=j;
mn=(double)i/j-sqrt(p);
}
}
}
int bb=gcd(cur1,cur2);
printf("%d/%d\n",cur1/bb,cur2/bb);
// cout<<cur1/bb<<"/"<<cur2/bb<<endl;
return ;
}

rational

codevs 2190 有理逼近的更多相关文章

  1. codevs 3289 花匠

    题目:codevs 3289 花匠 链接:http://codevs.cn/problem/3289/ 这道题有点像最长上升序列,但这里不是上升,是最长"波浪"子序列.用动态规划可 ...

  2. codevs 1082 线段树练习 3(区间维护)

    codevs 1082 线段树练习 3  时间限制: 3 s  空间限制: 128000 KB  题目等级 : 大师 Master 题目描述 Description 给你N个数,有两种操作: 1:给区 ...

  3. codevs 1285 二叉查找树STL基本用法

    C++STL库的set就是一个二叉查找树,并且支持结构体. 在写结构体式的二叉查找树时,需要在结构体里面定义操作符 < ,因为需要比较. set经常会用到迭代器,这里说明一下迭代器:可以类似的把 ...

  4. codevs 1576 最长上升子序列的线段树优化

    题目:codevs 1576 最长严格上升子序列 链接:http://codevs.cn/problem/1576/ 优化的地方是 1到i-1 中最大的 f[j]值,并且A[j]<A[i] .根 ...

  5. codevs 1080 线段树点修改

    先来介绍一下线段树. 线段树是一个把线段,或者说一个区间储存在二叉树中.如图所示的就是一棵线段树,它维护一个区间的和. 蓝色数字的是线段树的节点在数组中的位置,它表示的区间已经在图上标出,它的值就是这 ...

  6. codevs 1228 苹果树 树链剖分讲解

    题目:codevs 1228 苹果树 链接:http://codevs.cn/problem/1228/ 看了这么多树链剖分的解释,几个小时后总算把树链剖分弄懂了. 树链剖分的功能:快速修改,查询树上 ...

  7. codevs 1082 线段树区间求和

    codevs 1082 线段树练习3 链接:http://codevs.cn/problem/1082/ sumv是维护求和的线段树,addv是标记这歌节点所在区间还需要加上的值. 我的线段树写法在运 ...

  8. codevs 1052 地鼠游戏

    1052 地鼠游戏 http://codevs.cn/problem/1052/ 题目描述 Description 王钢是一名学习成绩优异的学生,在平时的学习中,他总能利用一切时间认真高效地学习,他不 ...

  9. codevs 2830 蓬莱山辉夜

    2830 蓬莱山辉夜 http://codevs.cn/problem/2830/ 题目描述 Description 在幻想乡中,蓬莱山辉夜是月球公主,居住在永远亭上,二次设定说她成天宅在家里玩电脑, ...

随机推荐

  1. [java] 数据处理

    背景: 有一组30天内的温度与时间的数据,格式如下: 详细情况:共30天的8k+项数据,每天内有260+项,每个记录温度的时间精确到秒 任务就是想根据这样的数据找到规律,来完成给定具体的时间预测出此时 ...

  2. django 使用 request 获取浏览器发送的参数

    django 使用 request 获取浏览器发送的参数     转载请注明出处 https://blog.csdn.net/fanlei5458/article/details/80638348 获 ...

  3. 一个linux下简单的纯C++实现Http请求类(GET,POST,上传,下载)

    目录 一个linux下简单的纯C++实现Http请求类(GET,POST,上传,下载) Http协议简述 HttpRequest类设计 请求部分 接收部分 关于上传和下载 Cpp实现 关于源码中的Lo ...

  4. jstat命令总结

    jvm统计信息监控工具 一. jstat是什么 jstat是JDK自带的一个轻量级小工具.全称"Java Virtual Machine statistics monitoring tool ...

  5. linux 驱动之LCD驱动(有framebuffer)

    <简介> LCD驱动里有个很重要的概念叫帧缓冲(framebuffer),它是Linux系统为显示设备提供的一个接口,应用程序在图形模式允许对显示缓冲区进行读写操作.用户根本不用关心物理显 ...

  6. Moscow Subregional 2013. 部分题题解 (6/12)

    Moscow Subregional 2013. 比赛连接 http://opentrains.snarknews.info/~ejudge/team.cgi?contest_id=006570 总叙 ...

  7. j.u.c系列(08)---之并发工具类:CountDownLatch

    写在前面 CountDownLatch所描述的是”在完成一组正在其他线程中执行的操作之前,它允许一个或多个线程一直等待“:用给定的计数 初始化 CountDownLatch.由于调用了 countDo ...

  8. xcode 拷贝新的ios image 进去以后 出现 the divices is locked

    苹果公司时不时的给你更新下ios系统.对于开发者来说.更新xcode是灾难性的. 一直在用xcode7.3.1,可是最新不小心把手机升级到 ios 10.1.1,这下好了,真机调试不行了.提示没有镜像 ...

  9. CentOS内核优化提示:cannot stat /proc/sys/net/bridge/bridge-nf-call-ip6tables: 没有那个文件或目录

    临时解决,重启失效 modprobe br_netfilter 为了开机加载上面这个模块 cat > /etc/rc.sysinit << EOF #!/bin/bash for f ...

  10. .Net 环境下C# 通过托管C++调用本地C++ Dll文件

     综述 : 本文章介绍.Net 环境下C# 通过托管C++调用本地C++ Dll文件, 示例环境为:VS2010, .Net4.0, Win7. 具体事例为测试C++, C#, 及C#调用本地C++D ...