estimator = KerasClassifier
如何在scikit-learn模型中使用Keras
通过用 KerasClassifier
或 KerasRegressor
类包装Keras模型,可将其用于scikit-learn。
要使用这些包装,必须定义一个函数,以便按顺序模式创建并返回Keras,然后当构建 KerasClassifier
类时,把该函数传递给 build_fn
参数。
例如:
def create_model():
...
return model model = KerasClassifier(build_fn=create_model)
KerasClassifier类
的构建器为可以采取默认参数,并将其被传递给 model.fit()
的调用函数,比如 epochs数目和批尺寸(batch size)。
例如:
def create_model():
...
return model model = KerasClassifier(build_fn=create_model, nb_epoch=10)
KerasClassifier类的构造也可以使用新的参数,使之能够传递给自定义的create_model()函数。这些新的参数,也必须由使用默认参数的 create_model() 函数的签名定义。
例如:
def create_model(dropout_rate=0.0):
...
return model model = KerasClassifier(build_fn=create_model, dropout_rate=0.2)
pred = estimator.predict(X_test)#返回给定测试数据的类预测。
pred1=estimator.predict_proba(X_test)#返回给定测试数据的类概率估计。
# pred3=estimator.score(X_test,Y_test)#返回给定测试数据和标签的平均精度。
print(X_test)#
print(Y_test)#实际类别
print(pred)#预测类别
print(pred1)
[[0. 1. 0. ... 1. 0. 0.]
[0. 0. 1. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]
...
[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]
[0. 1. 1. ... 0. 0. 0.]]
[[0. 0. 0. 0. 0. 1.]
[0. 0. 0. 0. 0. 1.]
[0. 0. 0. 0. 0. 1.]
...
[0. 0. 0. 0. 0. 1.]
[0. 0. 0. 0. 0. 1.]
[0. 0. 1. 0. 0. 0.]]
[5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5]
[[0.02377683 0.0266185 0.04945414 0.08426233 0.04495123 0.77093697]
[0.02115186 0.01721832 0.03360457 0.05283894 0.05303674 0.82214963]
[0.00838055 0.01647644 0.02293482 0.05378568 0.057558 0.8408645 ]
...
[0.01674003 0.01713392 0.03502046 0.03685626 0.03512193 0.85912746]
[0.0494712 0.0336375 0.05689533 0.03956604 0.04415505 0.77627486]
[0.04764625 0.04542363 0.08352048 0.15077472 0.10701337 0.5656215 ]]
estimator = KerasClassifier的更多相关文章
- 【Python与机器学习】:利用Keras进行多类分类
多类分类问题本质上可以分解为多个二分类问题,而解决二分类问题的方法有很多.这里我们利用Keras机器学习框架中的ANN(artificial neural network)来解决多分类问题.这里我们采 ...
- Python机器学习笔记:利用Keras进行分类预测
Keras是一个用于深度学习的Python库,它包含高效的数值库Theano和TensorFlow. 本文的目的是学习如何从csv中加载数据并使其可供Keras使用,如何用神经网络建立多类分类的数据进 ...
- Keras人工神经网络多分类(SGD)
import numpy as np import pandas as pd from keras.models import Sequential from keras.layers import ...
- python多标签分类模版
from sklearn.multioutput import MultiOutputClassifier from sklearn.ensemble import RandomForestClass ...
- np_utils.to_categorical
https://blog.csdn.net/zlrai5895/article/details/79560353 多类分类问题本质上可以分解为多个二分类问题,而解决二分类问题的方法有很多.这里我们利用 ...
- 3.2. Grid Search: Searching for estimator parameters
3.2. Grid Search: Searching for estimator parameters Parameters that are not directly learnt within ...
- 机器学习笔记5-Tensorflow高级API之tf.estimator
前言 本文接着上一篇继续来聊Tensorflow的接口,上一篇中用较低层的接口实现了线性模型,本篇中将用更高级的API--tf.estimator来改写线性模型. 还记得之前的文章<机器学习笔记 ...
- [sklearn]官方例程-Imputing missing values before building an estimator 随机填充缺失值
官方链接:http://scikit-learn.org/dev/auto_examples/plot_missing_values.html#sphx-glr-auto-examples-plot- ...
- tensorflow estimator API小栗子
TensorFlow的高级机器学习API(tf.estimator)可以轻松配置,训练和评估各种机器学习模型. 在本教程中,您将使用tf.estimator构建一个神经网络分类器,并在Iris数据集上 ...
随机推荐
- 26-算法训练 Torry的困惑(基本型) 素数打表
算法训练 Torry的困惑(基本型) 时间限制:1.0s 内存限制:512.0MB 问题描述 Torry从小喜爱数学.一天,老师告诉他,像2.3.5.7……这样的数叫做质数.To ...
- public void method(),void前面的泛型T是什么
public <T>这个T是个修饰符的功能,表示是个泛型方法,就像有static修饰的方法是个静态方法一样. 注意<T> 不是返回值,此处的返回值是void ,此处的<T ...
- 26.mysql日志
26.mysql日志mysql日志包括:错误日志.二进制日志.查询日志.慢查询日志. 26.1 错误日志错误日志记录了mysqld启动到停止之间发生的任何严重错误的相关信息.mysql故障时应首先查看 ...
- 8P - 钱币兑换问题
在一个国家仅有1分,2分,3分硬币,将钱N兑换成硬币有很多种兑法.请你编程序计算出共有多少种兑法. Input 每行只有一个正整数N,N小于32768. Output 对应每个输入,输出兑换方法数. ...
- redis 数据类型为set命令整理以及示例
数据类型为set.可以保证set内数据唯一.场景:生成订单号,因为要求订单号是绝对不能重复的,所以数据库中要设置为unique索引.但是其实可以通过redis,set来做每天的订单集合.比如A客户的订 ...
- hdu 5693 && LightOj 1422 区间DP
hdu 5693 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=5693 等差数列当划分细了后只用比较2个或者3个数就可以了,因为大于3的数都可以由2和3 ...
- Taxi
/* After the lessons n groups of schoolchildren went outside and decided to visit Polycarpus to cele ...
- XiaoKL学Python(D)argparse
该文以Python 2为基础. 1. argparse简介 argparse使得编写用户友好的命令行接口更简单. argparse知道如何解析sys.argv. argparse 模块自动生成 “帮助 ...
- 数据结构:链表 >> 链表按结点中第j个数据属性排序(冒泡排序法)
创建结点类,链表类,测试类 import java.lang.Object; //结点node=数据date+指针pointer public class Node { Object iprop; p ...
- sqli-labs:17,增删改
增 insert into users values(','lcamry','lcamry'); 删 delete from users where id=16 删数据库:drop database ...