estimator = KerasClassifier
如何在scikit-learn模型中使用Keras
通过用 KerasClassifier 或 KerasRegressor 类包装Keras模型,可将其用于scikit-learn。
要使用这些包装,必须定义一个函数,以便按顺序模式创建并返回Keras,然后当构建 KerasClassifier 类时,把该函数传递给 build_fn 参数。
例如:
def create_model():
...
return model model = KerasClassifier(build_fn=create_model)
KerasClassifier类 的构建器为可以采取默认参数,并将其被传递给 model.fit() 的调用函数,比如 epochs数目和批尺寸(batch size)。
例如:
def create_model():
...
return model model = KerasClassifier(build_fn=create_model, nb_epoch=10)
KerasClassifier类的构造也可以使用新的参数,使之能够传递给自定义的create_model()函数。这些新的参数,也必须由使用默认参数的 create_model() 函数的签名定义。
例如:
def create_model(dropout_rate=0.0):
...
return model model = KerasClassifier(build_fn=create_model, dropout_rate=0.2)
pred = estimator.predict(X_test)#返回给定测试数据的类预测。
pred1=estimator.predict_proba(X_test)#返回给定测试数据的类概率估计。
# pred3=estimator.score(X_test,Y_test)#返回给定测试数据和标签的平均精度。
print(X_test)#
print(Y_test)#实际类别
print(pred)#预测类别
print(pred1)
[[0. 1. 0. ... 1. 0. 0.]
[0. 0. 1. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]
...
[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]
[0. 1. 1. ... 0. 0. 0.]]
[[0. 0. 0. 0. 0. 1.]
[0. 0. 0. 0. 0. 1.]
[0. 0. 0. 0. 0. 1.]
...
[0. 0. 0. 0. 0. 1.]
[0. 0. 0. 0. 0. 1.]
[0. 0. 1. 0. 0. 0.]]
[5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5]
[[0.02377683 0.0266185 0.04945414 0.08426233 0.04495123 0.77093697]
[0.02115186 0.01721832 0.03360457 0.05283894 0.05303674 0.82214963]
[0.00838055 0.01647644 0.02293482 0.05378568 0.057558 0.8408645 ]
...
[0.01674003 0.01713392 0.03502046 0.03685626 0.03512193 0.85912746]
[0.0494712 0.0336375 0.05689533 0.03956604 0.04415505 0.77627486]
[0.04764625 0.04542363 0.08352048 0.15077472 0.10701337 0.5656215 ]]
estimator = KerasClassifier的更多相关文章
- 【Python与机器学习】:利用Keras进行多类分类
多类分类问题本质上可以分解为多个二分类问题,而解决二分类问题的方法有很多.这里我们利用Keras机器学习框架中的ANN(artificial neural network)来解决多分类问题.这里我们采 ...
- Python机器学习笔记:利用Keras进行分类预测
Keras是一个用于深度学习的Python库,它包含高效的数值库Theano和TensorFlow. 本文的目的是学习如何从csv中加载数据并使其可供Keras使用,如何用神经网络建立多类分类的数据进 ...
- Keras人工神经网络多分类(SGD)
import numpy as np import pandas as pd from keras.models import Sequential from keras.layers import ...
- python多标签分类模版
from sklearn.multioutput import MultiOutputClassifier from sklearn.ensemble import RandomForestClass ...
- np_utils.to_categorical
https://blog.csdn.net/zlrai5895/article/details/79560353 多类分类问题本质上可以分解为多个二分类问题,而解决二分类问题的方法有很多.这里我们利用 ...
- 3.2. Grid Search: Searching for estimator parameters
3.2. Grid Search: Searching for estimator parameters Parameters that are not directly learnt within ...
- 机器学习笔记5-Tensorflow高级API之tf.estimator
前言 本文接着上一篇继续来聊Tensorflow的接口,上一篇中用较低层的接口实现了线性模型,本篇中将用更高级的API--tf.estimator来改写线性模型. 还记得之前的文章<机器学习笔记 ...
- [sklearn]官方例程-Imputing missing values before building an estimator 随机填充缺失值
官方链接:http://scikit-learn.org/dev/auto_examples/plot_missing_values.html#sphx-glr-auto-examples-plot- ...
- tensorflow estimator API小栗子
TensorFlow的高级机器学习API(tf.estimator)可以轻松配置,训练和评估各种机器学习模型. 在本教程中,您将使用tf.estimator构建一个神经网络分类器,并在Iris数据集上 ...
随机推荐
- springmvc入门(1)
一..springmvc框架 1.什么是springmvc springmvc是spring框架的一个模块,springmvc和spring无需通过中间整合层进行整合.springmvc是一个基于mv ...
- background 和渐变 总结
一,background-position:(图片定位) 三种写法: 1):按%比,左上角最小(0%,0%),右下角最大(100%,%100): 2):(x,y)左上角最小(0,0),右下角最大(ma ...
- 基于Confluent.Kafka实现的KafkaConsumer消费者类和KafkaProducer消息生产者类型
一.引言 研究Kafka有一段时间了,略有心得,基于此自己就写了一个Kafka的消费者的类和Kafka消息生产者的类,进行了单元测试和生产环境的测试,还是挺可靠的. 二.源码 话不多说,直接上代码,代 ...
- Oracle_PL/SQL(2) 过程控制
0.检索单行数据0.1使用标量变量接受数据例1: 7788declare v_ename emp.ename%type; v_sal emp.sal%type;begin select ename,s ...
- IntelliJ idea 的破解
·1.破解的jar包下载链接: https://pan.baidu.com/s/1JV6GwguGQNs5pNQtst29Hw 提取码: u2jd 2.安装和破解地址:https://www.cnb ...
- $ each() 小结
each()方法能使DOM循环结构简洁,不容易出错.each()函数封装了十分强大的遍历功能,使用也很方便,它可以遍历一维数组.多维数组.DOM, JSON 等等在javaScript开发过程中使用$ ...
- ATM作业
关于ATM作业,最近做了很久,才明白,其实看了很久的作业视频讲解,到不如将作业的整个下载下来进行运行,去了解程序本身的结构和运行方式.首先说需求,就感觉是各种懵逼,这才学了函数,和模块之间的简单调用就 ...
- PHP 批量移动文件改名
public function changeCoverName(){ //$type = '考研'; //$coverPath = './Public/course_cover/kaoyan/'; $ ...
- Maximum Swap LT670
Given a non-negative integer, you could swap two digits at most once to get the maximum valued numbe ...
- ASP.NET 在OnClientClick中js方法直接调用Eval绑定字段的数据
最近有一项目中使用到了asp.net的GridView控件.需要在前端被点击某一行数据时,前端获取到改行后台绑定的数据序列号.遍用<%# Bind("ID) %>.<%# ...