Cat VS Dog

Problem Description
The zoo have N cats and M dogs, today there are P children visiting the zoo, each child has a like-animal and a dislike-animal, if the child's like-animal is a cat, then his/hers dislike-animal must be a dog, and vice versa.
Now the zoo administrator is removing some animals, if one child's like-animal is not removed and his/hers dislike-animal is removed, he/she will be happy. So the administrator wants to know which animals he should remove to make maximum number of happy children.
 
Input
The input file contains multiple test cases, for each case, the first line contains three integers N <= 100, M <= 100 and P <= 500.
Next P lines, each line contains a child's like-animal and dislike-animal, C for cat and D for dog. (See sample for details)
 
Output
For each case, output a single integer: the maximum number of happy children.
 
Sample Input
1 1 2
C1 D1
D1 C1

1 2 4
C1 D1
C1 D1
C1 D2
D2 C1

 
Sample Output
1
3

Hint

Case 2: Remove D1 and D2, that makes child 1, 2, 3 happy.

 
Source

————————————————————————————————

题目的意思是有n个人,每个人有喜欢的动物和讨厌的动物,如果保留他喜欢的删去讨厌的他就很高兴,问最多让多少人高兴

思路:根据人喜恶互斥关系建图,然后二分图最大匹配求最大独立点集

#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#include <vector>
#include <set>
#include <stack>
#include <map>
#include <climits>
using namespace std; #define LL long long
const int INF = 0x3f3f3f3f;
const int MAXN=1005;
int uN,vN,n; //u,v数目
int g[MAXN][MAXN];
int linker[MAXN];
bool used[MAXN];
int link[MAXN];
int vis[MAXN];
bool dfs(int u)
{
int v;
for(v=0; v<vN; v++)
if(g[u][v]&&!used[v])
{
used[v]=true;
if(linker[v]==-1||dfs(linker[v]))
{
linker[v]=u;
return true;
}
}
return false;
} int hungary()
{
int res=0;
int u;
memset(linker,-1,sizeof(linker));
for(u=0; u<uN; u++)
{
memset(used,0,sizeof(used));
if(dfs(u)) res++;
}
return res;
} int main()
{
int m,k,x,y,T;
string s1[1005],s2[1005];
while(~scanf("%d%d%d",&x,&y,&m))
{ memset(g,0,sizeof g);
for(int i=0; i<m; i++)
{
cin>>s1[i]>>s2[i];
}
for(int i=0;i<m;i++)
for(int j=0;j<m;j++)
{
if(s1[i]==s2[j]||s2[i]==s1[j])
g[i][j]=1;
}
uN=vN=m;
printf("%d\n",m-hungary()/2);
}
return 0;
}

  

Hdu3829 Cat VS Dog(最大独立点集)的更多相关文章

  1. HDU3829 Cat VS Dog —— 最大独立集

    题目链接:https://vjudge.net/problem/HDU-3829 Cat VS Dog Time Limit: 2000/1000 MS (Java/Others)    Memory ...

  2. HDU3829 Cat VS Dog

    题目链接:https://vjudge.net/problem/HDU-3829 题目大意: 有\(P\)个小孩,\(N\)只猫,\(M\)只狗.每个小孩都有自己喜欢的某一只宠物和讨厌的某一只宠物(其 ...

  3. HDU3829:Cat VS Dog(最大独立集)

    Cat VS Dog Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others)Total ...

  4. HDU 3829 Cat VS Dog / NBUT 1305 Cat VS Dog(二分图最大匹配)

    HDU 3829 Cat VS Dog / NBUT 1305 Cat VS Dog(二分图最大匹配) Description The zoo have N cats and M dogs, toda ...

  5. Cat VS Dog HDU - 3829 (最大独立集 )

    Cat VS Dog Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others)Total ...

  6. Cat VS Dog

    Cat VS Dog Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others)Total ...

  7. POJ Girls and Boys (最大独立点集)

                                                                Girls and Boys Time Limit: 5000MS   Memo ...

  8. HDU 3289 Cat VS Dog (二分匹配 求 最大独立集)

    题意:每个人有喜欢的猫和不喜欢的狗.留下他喜欢的猫他就高心,否则不高心.问最后最多有几个人高心. 思路:二分图求最大匹配 #include<cstdio> #include<cstr ...

  9. (hdu step 6.3.7)Cat vs. Dog(当施工方规则:建边当观众和其他观众最喜爱的东西冲突,求最大独立集)

    称号: Cat vs. Dog Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...

随机推荐

  1. 安卓项目R,java文件不能自动更新,clean之后,R.java消失 (转自 Cynosure鱼)

      今天整了个安卓项目,新增加了个跳转页面,添加完背景图,发现有个R.id找不到了,于是clean了一下,这下出问题了,发现各处的R.id都找不到,报错.结果一看是R.java没了然后各种百度结果:有 ...

  2. Spring Environment(一)API 介绍

    Spring Environment(一)API 使用 Spring 系列目录(https://www.cnblogs.com/binarylei/p/10198698.html) Spring 3. ...

  3. Metasploit学习

    阶段一:初步渗透 GO! msfconsole 相关漏洞 msf > search platform: windows xp sp3 查看某个漏洞后,查看漏洞详细信息 msf > info ...

  4. 解决linux ubuntu不能识别华为手机的问题--升级内核

    敝人手中有一个华为mate8,但是debian, ubuntu及一系列衍生版均不能识别.只能识别出一个华为手机助手,但是无法使用华为的内置存贮. 在fedora上是可以完美使用的. 归根到底的原因,是 ...

  5. mybatis学习四 mybatis的三种查询方式

    <select id="selAll" resultType="com.caopeng.pojo.Flower"> select * from fl ...

  6. Windows AD域管理软件

  7. Anaconda 3中配置OpenCV

    平台:win10 x64+Anaconda 3(64-bit)+opencv_python-3.4.5+contrib-cp37-cp37m-win_amd64 一.OpenCV下载 Python环境 ...

  8. centos7 hive + 远程mysql 搭建笔记

    1.require:java环境,本地可用的hadoop,远程可访问的mysql 2.拷贝hive文件(hive-2.2.1) 3.设置环境变量 export HIVE_HOME=/data/spar ...

  9. 2018.11.30 spoj220 Relevant Phrases of Annihilation(后缀数组+二分答案)

    传送门 代码: 先用特殊字符把所有字符串连接在一起. 然后二分答案将sasasa数组分组. 讨论是否存在一个组满足组内对于每一个字符串都存在两段不相交字串满足条件. #include<bits/ ...

  10. java 后台 post请求 携带参数 远程操作 调用接口

    package com.huayu.tizong.matchteam.util; import java.io.BufferedReader; import java.io.IOException; ...