Cat VS Dog

Problem Description
The zoo have N cats and M dogs, today there are P children visiting the zoo, each child has a like-animal and a dislike-animal, if the child's like-animal is a cat, then his/hers dislike-animal must be a dog, and vice versa.
Now the zoo administrator is removing some animals, if one child's like-animal is not removed and his/hers dislike-animal is removed, he/she will be happy. So the administrator wants to know which animals he should remove to make maximum number of happy children.
 
Input
The input file contains multiple test cases, for each case, the first line contains three integers N <= 100, M <= 100 and P <= 500.
Next P lines, each line contains a child's like-animal and dislike-animal, C for cat and D for dog. (See sample for details)
 
Output
For each case, output a single integer: the maximum number of happy children.
 
Sample Input
1 1 2
C1 D1
D1 C1

1 2 4
C1 D1
C1 D1
C1 D2
D2 C1

 
Sample Output
1
3

Hint

Case 2: Remove D1 and D2, that makes child 1, 2, 3 happy.

 
Source

————————————————————————————————

题目的意思是有n个人,每个人有喜欢的动物和讨厌的动物,如果保留他喜欢的删去讨厌的他就很高兴,问最多让多少人高兴

思路:根据人喜恶互斥关系建图,然后二分图最大匹配求最大独立点集

#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#include <vector>
#include <set>
#include <stack>
#include <map>
#include <climits>
using namespace std; #define LL long long
const int INF = 0x3f3f3f3f;
const int MAXN=1005;
int uN,vN,n; //u,v数目
int g[MAXN][MAXN];
int linker[MAXN];
bool used[MAXN];
int link[MAXN];
int vis[MAXN];
bool dfs(int u)
{
int v;
for(v=0; v<vN; v++)
if(g[u][v]&&!used[v])
{
used[v]=true;
if(linker[v]==-1||dfs(linker[v]))
{
linker[v]=u;
return true;
}
}
return false;
} int hungary()
{
int res=0;
int u;
memset(linker,-1,sizeof(linker));
for(u=0; u<uN; u++)
{
memset(used,0,sizeof(used));
if(dfs(u)) res++;
}
return res;
} int main()
{
int m,k,x,y,T;
string s1[1005],s2[1005];
while(~scanf("%d%d%d",&x,&y,&m))
{ memset(g,0,sizeof g);
for(int i=0; i<m; i++)
{
cin>>s1[i]>>s2[i];
}
for(int i=0;i<m;i++)
for(int j=0;j<m;j++)
{
if(s1[i]==s2[j]||s2[i]==s1[j])
g[i][j]=1;
}
uN=vN=m;
printf("%d\n",m-hungary()/2);
}
return 0;
}

  

Hdu3829 Cat VS Dog(最大独立点集)的更多相关文章

  1. HDU3829 Cat VS Dog —— 最大独立集

    题目链接:https://vjudge.net/problem/HDU-3829 Cat VS Dog Time Limit: 2000/1000 MS (Java/Others)    Memory ...

  2. HDU3829 Cat VS Dog

    题目链接:https://vjudge.net/problem/HDU-3829 题目大意: 有\(P\)个小孩,\(N\)只猫,\(M\)只狗.每个小孩都有自己喜欢的某一只宠物和讨厌的某一只宠物(其 ...

  3. HDU3829:Cat VS Dog(最大独立集)

    Cat VS Dog Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others)Total ...

  4. HDU 3829 Cat VS Dog / NBUT 1305 Cat VS Dog(二分图最大匹配)

    HDU 3829 Cat VS Dog / NBUT 1305 Cat VS Dog(二分图最大匹配) Description The zoo have N cats and M dogs, toda ...

  5. Cat VS Dog HDU - 3829 (最大独立集 )

    Cat VS Dog Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others)Total ...

  6. Cat VS Dog

    Cat VS Dog Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others)Total ...

  7. POJ Girls and Boys (最大独立点集)

                                                                Girls and Boys Time Limit: 5000MS   Memo ...

  8. HDU 3289 Cat VS Dog (二分匹配 求 最大独立集)

    题意:每个人有喜欢的猫和不喜欢的狗.留下他喜欢的猫他就高心,否则不高心.问最后最多有几个人高心. 思路:二分图求最大匹配 #include<cstdio> #include<cstr ...

  9. (hdu step 6.3.7)Cat vs. Dog(当施工方规则:建边当观众和其他观众最喜爱的东西冲突,求最大独立集)

    称号: Cat vs. Dog Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...

随机推荐

  1. c# 子线程打开子窗体

    下边是在子线程打开子窗口,结果跑到else 里边了跨线程操作窗体控件InvokeRequired失效,无法用于打开子窗体,addonetwo.InvokeRequired,访问不了呢? 大神知道帮忙回 ...

  2. appache压力测试

    apache自带压力工具测试说明: Usage: ab [options] [http[s]://]hostname[:port]/pathOptions are: -n requests Numbe ...

  3. Laravel 利用 observer 类基于状态属性,对进行删除和修改的控制

    1 我们知道 Observer 类可以监听模型类的相关事件 1.1 creating, created, updating, updated, saving, saved, deleting, del ...

  4. read temperature

    button1, button2, richtexbox1, serialport1, using System;using System.Collections.Generic;using Syst ...

  5. npm run build出问题十分通用的解决方法

    1.C:\NanoFabric\52ABP\SPAHost\ClientApp\node_modules 原来的目录重命名为C:\NanoFabric\52ABP\SPAHost\ClientApp\ ...

  6. @Html.EditorFor() 用法

    @Html.EditorFor()返回一个由表达式表示的对象中的每个属性所对应的input元素,主要是针对强类型,一般这种方式用得多些a.@Html.EditorFor(mode=>mode.N ...

  7. JWT-Token登陆校验

    JWT:就是靠给客户端(浏览器)一个规范凭证(签名),然后服务器解析签名,代替原有的session存值. 不带refreshToken的JWT例子:https://blog.csdn.net/u011 ...

  8. 2017多校1 hdu-Balala Power!

    其实这道题的思路挺简单的,就是找在第一位置没有出现过并且权值小的那个字母为0. 把a~z按照权值排序,其实难就难在这里,权值很大我们怎么给他排序. 其实可以开个数组来存他们每位数是多少,然后给他们比个 ...

  9. UDDI

    什么是 UDDI? UDDI 是一个独立于平台的框架,用于通过使用 Internet 来描述服务,发现企业,并对企业服务进行集成. UDDI 指的是通用描述.发现与集成服务 UDDI 是一种用于存储有 ...

  10. UGUI图集

    Editor->Project Settings 下面有sprite packer的模式.Disabled表示不启用它,Enabled For Builds 表示只有打包的时候才会启用它,Alw ...