题目链接

参考.

\(Description\)

将\(1,2,\cdots,n(n\leq 300)\)依次入栈/出栈,并满足\(m(m\leq 90000)\)个形如\(x\)要在\(y\)之前出栈的限制,问合法的出栈序列有多少种。

\(Solution\)

没有限制就是个卡特兰数,但有了限制就要考虑好好DP了。。

序列的入栈&出栈顺序可以构成一棵二叉树,且每一棵子树中的点一定比该子树的根节点出栈早。

\(f[i][j]\)表示子树根节点为\(i\),其中的点是\(i\sim j\),\(i+1\sim j\)都比\(i\)出栈早。初始为:\(f[i][i]=1\).

无限制的DP方程就是: $$f[i][j]=\sum_{k=i+1}^jf[i][k-1]*f[k][j]$$

(这个是倒着枚举\(i\)的)

如果有限制,直接在DP完\(f[i][\ ]\)后把非法的\(f[i][\ ]\)设成0就行了。。

如果\(j\)要在\(k\)前出栈(\(j<k\)),那么\(f[j][k],f[j][k+1],\cdots\)都是非法的(\(f[\ ][\ ]\)当然是处理小的那个了)。

在\(j>k\)时,\(f[k][1],\cdots,f[k][j-1]\)是非法的。

最后的答案应是\(f[0][n]\).

注意如果限制有\(i\)在\(i\)前,那么直接0。

好像可以在\(f[\ ][\ ]\)上差分做,不看了。。https://ksmeow.moe/numbers_hdu5181_sol/

//483MS	1868K
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
#define mod (1000000007)
const int N=305; int n,L[N],R[N],f[N][N]; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
} int main()
{
int T=read(),m; bool flag;
while(T--)
{
flag=0;
n=read(),m=read();
for(int i=0; i<=n; ++i) L[i]=0,R[i]=n+1;
for(int x,y,i=1; i<=m; ++i)
{
x=read(),y=read();
if(x<y) R[x]=std::min(R[x],y);
else if(x>y) L[y]=std::max(L[y],x);
else flag=1;
}
if(flag) {puts("0"); continue;}
memset(f,0,sizeof f);
for(int i=n; ~i; --i)
{
f[i][i]=1;
for(int j=i+1; j<=n; ++j)
for(int k=i+1; k<=j; ++k)
(f[i][j]+=1ll*f[i][k-1]*f[k][j]%mod)%=mod;
for(int j=1; j<L[i]; ++j) f[i][j]=0;
for(int j=R[i]; j<=n; ++j) f[i][j]=0;
}
printf("%d\n",f[0][n]);
}
return 0;
}

HDU.5181.numbers(DP)的更多相关文章

  1. hdu 5181 numbers——思路+区间DP

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5181 题解:https://www.cnblogs.com/Miracevin/p/10960717.ht ...

  2. hdu 5181 numbers

    http://acm.hdu.edu.cn/showproblem.php?pid=5181 题意: 有一个栈,其中有n个数1~n按顺序依次进入栈顶,在某个时刻弹出. 其中m个限制,形如数字A必须在数 ...

  3. HDOJ(HDU).1058 Humble Numbers (DP)

    HDOJ(HDU).1058 Humble Numbers (DP) 点我挑战题目 题意分析 水 代码总览 /* Title:HDOJ.1058 Author:pengwill Date:2017-2 ...

  4. hdu 3709 数字dp(小思)

    http://acm.hdu.edu.cn/showproblem.php?pid=3709 Problem Description A balanced number is a non-negati ...

  5. hdu 4352 数位dp + 状态压缩

    XHXJ's LIS Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  6. hdu 4123 树形DP+RMQ

    http://acm.hdu.edu.cn/showproblem.php? pid=4123 Problem Description Bob wants to hold a race to enco ...

  7. hdu 4507 数位dp(求和,求平方和)

    http://acm.hdu.edu.cn/showproblem.php?pid=4507 Problem Description 单身! 依旧单身! 吉哥依旧单身! DS级码农吉哥依旧单身! 所以 ...

  8. hdu 4283 区间dp

    You Are the One Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  9. HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化

    HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化 n个节点n-1条线性边,炸掉M条边也就是分为m+1个区间 问你各个区间的总策略值最少的炸法 就题目本身而言,中规中矩的 ...

随机推荐

  1. python 删除2天前后缀为.log的文件

    python脚本 删除2天前后缀为.log的文件 #!/usr/local/python/bin/python #-*-coding=utf8 -*- import time import os,sy ...

  2. redis添加systemctl服务

    1.编辑systemctl服务配置文件 vim /lib/systemd/system/redis.service 2.内容如下 [Unit]Description=RedisAfter=networ ...

  3. bzoj千题计划246:bzoj2242: [SDOI2011]计算器

    http://www.lydsy.com/JudgeOnline/problem.php?id=2242 #include<map> #include<cmath> #incl ...

  4. Linux(Debian)软件安装

    # 配置/etc/apt/sources.list 通过root权限修改/etc/apt/sources.list $ su #输入密码进入root权限 $ chmod 0666 /etc/apt/s ...

  5. B-树(B+树) 学习总结

    一,B-树的定义及介绍 为什么会有B-树? 熟悉的树的结构有二叉树查找树或者平衡二叉树……平衡二叉树保证最坏情况下各个操作的时间复杂度为O(logN),但是为了保持平衡,在插入或删除元素时,需要进行旋 ...

  6. dialog 菜单

    dialog 菜单 # 默认将所有输出用 stderr 输出,不显示到屏幕 使用参数 --stdout 可将选择赋给变量 # 退出状态 0正确 1错误 窗体类型 --calendar # 日历 --c ...

  7. MFC笔记(DN)

    01:MFC应用程序编程 02:MFC菜单.工具栏.状态栏 03:视图窗口

  8. 第12月第15天 mysqlx boost reswift

    1. INSTALL PLUGIN mysqlx SONAME 'mysqlx.so' https://yq.aliyun.com/articles/38288 2. boost boost::sha ...

  9. 第9月第26天 pairs和ipairs cocos2dx 动画

    1. a={ ip = "127.0.0.1", port = 6789 } for i,v in pairs(a) do print(i,v) end a={1} for i,v ...

  10. 20165320 2017-2018-2《Java程序设计》课程总结

    20165320 2017-2017-2<Java程序设计>课程总结 一.每周作业链接汇总 1.我期待的师生关系 20165320 我期望的师生关系 2.学习基础和C语言基础调查 2016 ...