【LOJ】#2186. 「SDOI2015」道路修建
题解
就是线段树维护一下转移矩阵
分成两种情况,一种是前面有两个联通块,一种是前面有一个联通块
从一个联通块转移到一个联通块
也就是新加一列的三个边选其中两条即可
从一个联通块转移到两个联通块
不连竖着的那条边,横着的两条边转移一条短的即可
从两个联通块转移到一个联通块
新加的一列三个边全连上
从两个联通块转移到两个联通块
连上横着的两条边
代码
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define pdi pair<db,int>
#define mp make_pair
#define pb push_back
#define enter putchar('\n')
#define space putchar(' ')
#define eps 1e-8
#define mo 974711
#define MAXN 60005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
int64 a[2][MAXN],b[MAXN];
int N,M;
struct Matrix {
int64 f[2][2];
Matrix() {
for(int i = 0 ; i < 2 ; ++i) for(int j = 0 ; j < 2 ; ++j) f[i][j] = 1e10;
}
friend Matrix operator * (const Matrix &a,const Matrix &b) {
Matrix c;
for(int i = 0 ; i < 2 ; ++i) {
for(int j = 0 ; j < 2 ; ++j) {
for(int k = 0 ; k < 2 ; ++k) {
c.f[i][j] = min(c.f[i][j],a.f[i][k] + b.f[k][j]);
}
}
}
return c;
}
};
struct node {
int l,r;Matrix m;
}tr[MAXN * 4];
void update(int u) {
tr[u].m = tr[u << 1].m * tr[u << 1 | 1].m;
}
Matrix Calc(int c) {
Matrix res;
res.f[0][1] = min(a[0][c - 1],a[1][c - 1]);
res.f[0][0] = min(a[0][c - 1] + a[1][c - 1],b[c] + min(a[0][c - 1],a[1][c - 1]));
res.f[1][0] = a[0][c - 1] + a[1][c - 1] + b[c];
res.f[1][1] = a[0][c - 1] + a[1][c - 1];
return res;
}
void build(int u,int l,int r) {
tr[u].l = l;tr[u].r = r;
if(l == r) {
tr[u].m = Calc(l);
return;
}
int mid = (l + r) >> 1;
build(u << 1,l,mid);
build(u << 1 | 1,mid + 1,r);
update(u);
}
void Change(int u,int pos) {
if(tr[u].l == tr[u].r) {tr[u].m = Calc(pos);return;}
int mid = (tr[u].l + tr[u].r) >> 1;
if(pos <= mid) Change(u << 1,pos);
else Change(u << 1 | 1,pos);
update(u);
}
Matrix Query(int u,int l,int r) {
if(tr[u].l == l && tr[u].r == r) return tr[u].m;
int mid = (tr[u].l + tr[u].r) >> 1;
if(r <= mid) return Query(u << 1,l,r);
else if(l > mid) return Query(u << 1 | 1,l,r);
else return Query(u << 1,l,mid) * Query(u << 1 | 1,mid + 1,r);
}
void Init() {
read(N);read(M);
for(int i = 0 ; i <= 1 ; ++i) {
for(int j = 1 ; j < N ; ++j) {
read(a[i][j]);
}
}
for(int j = 1 ; j <= N ; ++j) {
read(b[j]);
}
build(1,1,N);
}
void Solve() {
char op[5];
int l,r;int x0,y0,x1,y1;
int64 w;
for(int i = 1 ; i <= M ; ++i) {
scanf("%s",op + 1);
if(op[1] == 'Q') {
read(l);read(r);
if(l == r) {out(b[l]);enter;}
else {
Matrix t = Query(1,l + 1,r);
out(min(t.f[1][0],b[l] + t.f[0][0]));enter;
}
}
else {
read(x0);read(y0);read(x1);read(y1);read(w);
if(x0 == x1) {
if(y0 > y1) swap(y0,y1);
a[x0 - 1][y0] = w;
Change(1,y1);
}
else {
b[y0] = w;
Change(1,y0);
}
}
}
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Init();
Solve();
}
【LOJ】#2186. 「SDOI2015」道路修建的更多相关文章
- 【LOJ】#2445. 「NOI2011」道路修建
题解 看完题目我的第一个反应是--要求最小花费的方案?!怎么求??? 然后我把题读完了.好吧. 记录一下size就行,比NOIP普及组还要不如的题= = 代码 #include <iostrea ...
- LOJ #2183「SDOI2015」序列统计
有好多好玩的知识点 LOJ 题意:在集合中选$ n$个元素(可重复选)使得乘积模$ m$为$ x$,求方案数对$ 1004535809$取模 $ n<=10^9,m<=8000且是质数,集 ...
- Loj #2529. 「ZJOI2018」胖
Loj #2529. 「ZJOI2018」胖 题目描述 Cedyks 是九条可怜的好朋友(可能这场比赛公开以后就不是了),也是这题的主人公. Cedyks 是一个富有的男孩子.他住在著名的 The P ...
- Loj #2192. 「SHOI2014」概率充电器
Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...
- Loj #3096. 「SNOI2019」数论
Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...
- Loj #3093. 「BJOI2019」光线
Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...
- Loj #3089. 「BJOI2019」奥术神杖
Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...
- Loj #2542. 「PKUWC2018」随机游走
Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...
- Loj #3059. 「HNOI2019」序列
Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k ...
随机推荐
- python里使用正则表达式的非贪婪模式
在正则表达式里,什么是正则表达式的贪婪与非贪婪匹配 如:String str="abcaxc"; Patter p="ab*c"; 贪婪匹配:正则表达式一般趋向 ...
- linux运维之分析日志相关命令(1)
一.分析日志 1.查看有多少IP访问 awk '{print $1}' log_file|sort|uniq|wc -l 2.查看某一个页面被访问的次数 grep "/index.php&q ...
- 构造代码块----java基础总结
前言:之前一直不知道构造代码块的意思是什么,只是知道他的具体的表现形式,因为经常在面试题中看到,所以准备好好写写. 作用: 给对象进行初始化,对象一建立就运行,而且优于构造方法运行. 和构造方法的区别 ...
- Flink入门训练--以New York City Taxi为例
最近在学Flink,准备用Flink搭建一个实时的推荐系统.找到一个好的网站(也算作是flink创始者的官方网站),上面有关于Flink的上手教程,用来练练手,熟悉熟悉,下文仅仅是我的笔记. 1. 数 ...
- sklearn6_生成分类数据
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
- sublime Text不能安装插件的解决办法
我的sublime Text不能安装插件,提示如下错误 解决办法如下: 1.点击Preferences > Browse Packages菜单 2.进入打开的目录的“上层目录”,然后再进入Ins ...
- bzoj千题计划178:bzoj2425: [HAOI2010]计数
http://www.lydsy.com/JudgeOnline/problem.php?id=2425 题意转化: 给定一个集合S,求S的全排列<给定排列 的排列个数 从最高位开始逐位枚举确定 ...
- C#的Struct
- php拾遗: 类型约束
突然间什么都不想干,感觉就像来大姨夫一样..但是又不能断了每个工作日都写博客的习惯..所以今天水一下吧. PHP用了快2年了,但是这东西竟然第一次看到,突然间,觉得自己有掉回战五渣的行列了.翻开官方文 ...
- (P2022 有趣的数)||(zoj Little Sub and Mr.Potato's Math Problem)(思维)
题目链接:https://www.luogu.org/problemnew/show/P2022 题目大意:中文题目 具体思路: 第一步:我们可以先计算出当前的数前面按照字典序的话,前面有多少数(包括 ...