题目描述

Alice有n个字符串S_1,S_2...S_n,Bob有一个字符串集合T,一开始集合是空的。
接下来会发生q个操作,操作有两种形式:
“1 P”,Bob往自己的集合里添加了一个字符串P。
“2 x”,Alice询问Bob,集合T中有多少个字符串包含串S_x。(我们称串A包含串B,当且仅当B是A的子串)
Bob遇到了困难,需要你的帮助。

输入

第1行,一个数n;
接下来n行,每行一个字符串表示S_i;
下一行,一个数q;
接下来q行,每行一个操作,格式见题目描述。

输出

对于每一个Alice的询问,帮Bob输出答案。

样例输入

3
a
bc
abc
5
1 abca
2 1
1 bca
2 2
2 3

样例输出

1
2
1


题解

AC自动机+树链的并+DFS序+树状数组

P的子串体现为前缀的后缀,某个前缀的所有后缀在AC自动机上体现为:Trie树上该前缀对应节点的fail树到根节点的链上节点。

因此对所有S串建立AC自动机,求出fail树,那么添加一个P串,它所包含的S串的范围就是P在Trie树上每个位置(P的每个前缀)fail树上到根节点所覆盖的所有节点,即把树链的并+1。

把所有位置按照DFS序排序,每个点到根节点路径上+1,每相邻两点LCA到根节点路径上-1。查询就是查单点权值。需要支持:到根节点的路径加、单点求值,差分后变为单点加、子树求值,使用DFS将子树转化为区间,再用树状数组维护区间和即可。

时间复杂度 $O(n\log n)$ 。

#include <queue>
#include <cstdio>
#include <algorithm>
#define N 100010
#define M 2000010
using namespace std;
queue<int> q;
int c[M][26] , fail[M] , tot = 1 , pos[N] , head[M] , to[M] , next[M] , cnt , fa[M][20] , deep[M] , log[M] , vp[M] , lp[M] , tp , f[M] , val[M] , tv;
char str[M];
void build()
{
int x , i;
for(i = 0 ; i < 26 ; i ++ ) c[0][i] = 1;
q.push(1);
while(!q.empty())
{
x = q.front() , q.pop();
for(i = 0 ; i < 26 ; i ++ )
{
if(c[x][i]) fail[c[x][i]] = c[fail[x]][i] , q.push(c[x][i]);
else c[x][i] = c[fail[x]][i];
}
}
}
inline void add(int x , int y)
{
to[++cnt] = y , next[cnt] = head[x] , head[x] = cnt;
}
void dfs(int x)
{
int i;
vp[x] = ++tp;
for(i = 1 ; i <= log[deep[x]] ; i ++ ) fa[x][i] = fa[fa[x][i - 1]][i - 1];
for(i = head[x] ; i ; i = next[i]) fa[to[i]][0] = x , deep[to[i]] = deep[x] + 1 , dfs(to[i]);
lp[x] = tp;
}
inline int lca(int x , int y)
{
int i;
if(deep[x] < deep[y]) swap(x , y);
for(i = log[deep[x] - deep[y]] ; ~i ; i -- )
if(deep[x] - deep[y] >= (1 << i))
x = fa[x][i];
if(x == y) return x;
for(i = log[deep[x]] ; ~i ; i -- )
if(deep[x] >= (1 << i) && fa[x][i] != fa[y][i])
x = fa[x][i] , y = fa[y][i];
return fa[x][0];
}
inline void fix(int x , int a)
{
int i;
for(i = x ; i <= tp ; i += i & -i) f[i] += a;
}
inline int query(int x)
{
int i , ans = 0;
for(i = x ; i ; i -= i & -i) ans += f[i];
return ans;
}
bool cmp(int a , int b)
{
return vp[a] < vp[b];
}
int main()
{
int n , m , i , j , t , opt , x;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ )
{
scanf("%s" , str) , t = 1;
for(j = 0 ; str[j] ; j ++ )
{
if(!c[t][str[j] - 'a']) c[t][str[j] - 'a'] = ++tot;
t = c[t][str[j] - 'a'];
}
pos[i] = t;
}
build();
for(i = 2 ; i <= tot ; i ++ ) add(fail[i] , i) , log[i] = log[i >> 1] + 1;
dfs(1);
scanf("%d" , &m);
while(m -- )
{
scanf("%d" , &opt);
if(opt == 1)
{
scanf("%s" , str) , t = 1 , tv = 0;
for(i = 0 ; str[i] ; i ++ ) t = c[t][str[i] - 'a'] , val[++tv] = t;
sort(val + 1 , val + tv + 1 , cmp);
for(i = 1 ; i <= tv ; i ++ ) fix(vp[val[i]] , 1);
for(i = 1 ; i < tv ; i ++ ) fix(vp[lca(val[i] , val[i + 1])] , -1);
}
else scanf("%d" , &x) , printf("%d\n" , query(lp[pos[x]]) - query(vp[pos[x]] - 1));
}
return 0;
}

【bzoj3881】[Coci2015]Divljak AC自动机+树链的并+DFS序+树状数组的更多相关文章

  1. BZOJ3881[Coci2015]Divljak——AC自动机+树状数组+LCA+dfs序+树链的并

    题目描述 Alice有n个字符串S_1,S_2...S_n,Bob有一个字符串集合T,一开始集合是空的. 接下来会发生q个操作,操作有两种形式: “1 P”,Bob往自己的集合里添加了一个字符串P. ...

  2. 【BZOJ】2819: Nim(树链剖分 / lca+dfs序+树状数组)

    题目 传送门:QWQ 分析 先敲了个树链剖分,发现无法AC(其实是自己弱,懒得debug.手写栈) 然后去学了学正解 核心挺好理解的,$ query(a) $是$ a $到根的异或和. 答案就是$ l ...

  3. Codeforces Round #200 (Div. 1) D Water Tree 树链剖分 or dfs序

    Water Tree 给出一棵树,有三种操作: 1 x:把以x为子树的节点全部置为1 2 x:把x以及他的所有祖先全部置为0 3 x:询问节点x的值 分析: 昨晚看完题,马上想到直接树链剖分,在记录时 ...

  4. BZOJ 3881: [Coci2015]Divljak [AC自动机 树链的并]

    3881: [Coci2015]Divljak 题意:添加新文本串,询问某个模式串在多少种文本串里出现过 模式串建AC自动机,考虑添加一个文本串,走到的节点记录下来求树链的并 方法是按dfs序排序去重 ...

  5. 【BZOJ-3881】Divljak AC自动机fail树 + 树链剖分+ 树状数组 + DFS序

    3881: [Coci2015]Divljak Time Limit: 20 Sec  Memory Limit: 768 MBSubmit: 508  Solved: 158[Submit][Sta ...

  6. BZOJ-3881:Divljak (AC自动机+DFS序+树链求并+树状数组)

    Alice有n个字符串S_1,S_2...S_n,Bob有一个字符串集合T,一开始集合是空的. 接下来会发生q个操作,操作有两种形式: “1 P”,Bob往自己的集合里添加了一个字符串P. “2 x” ...

  7. bzoj 3881: [Coci2015]Divljak AC自动机

    题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=3881 题解: 这道题我想出了三种做法,不过只有最后一种能过. 第一种: 首先我们把所有的 ...

  8. BZOJ 3881[COCI2015]Divljak (AC自动机+dfs序+lca+BIT)

    显然是用AC自动机 先构建好AC自动机,当B中插入新的串时就在trie上跑,对于当前点,首先这个点所代表的串一定出现过,然后这个点指向的fail也一定出现过.那么我们把每个点fail当作父亲,建一棵f ...

  9. 【BZOJ】1146: [CTSC2008]网络管理Network(树链剖分+线段树套平衡树+二分 / dfs序+树状数组+主席树)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1146 第一种做法(时间太感人): 第二种做法(rank5,好开心) ================ ...

随机推荐

  1. 输入5个学生的信息(包括学号,姓名,英语成绩,计算机语言成绩和数据库成绩), 统计各学生的总分,然后将学生信息和统计结果存入test.txt文件中

    题目分析: 1.首先想到的是数组存放数据,数组肯定是String类型. 2.String类型的数组,5行6列.要把从第0行第2列到第4行第4列的数据取出转换成数值型,再统计三科总分.最后把计算出的总分 ...

  2. 为什么重写equals还要重写hashcode??

    equals和hashcode是object类下一个重要的方法,而object类是所有类的父类,所以所有的类都有这两个方法 equals和hashcode间的关系: 1.如果两个对象相同(即equal ...

  3. samba服务器配置及window网络磁盘映射

    1. Samba服务器工作原理 客户端向Samba服务器发起请求,请求访问共享目录,Samba服务器接收请求,查询smb.conf文件,查看共享目录是否存在,以及来访者的访问权限,如果来访者具有相应的 ...

  4. html样式表格

    <html><body><table border="1">  <tr height="20px">    &l ...

  5. 感言&3

  6. Python算法基础

    一.简介 定义和特征 定义:算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制.也就是说,能够对一定规范的输入,在有限时 ...

  7. 使用FindAncestor查找方式绑定且不需要使用datacontext

    原文:使用FindAncestor查找方式绑定且不需要使用datacontext <UserControl x:Class="QuJiao.AnimationVideoPlayer&q ...

  8. linux & windows下重启oracle

    Linux:方法1 用root以ssh登录到linux,打开终端输入以下命令: cd $ORACLE_HOME #进入到oracle的安装目录 dbstart #重启服务器 lsnrctl start ...

  9. 蒙特卡罗方法 python 实现2

    如果不考虑作图,这里的两个例子可以改写成下面的样子: 求圆周率 import random ''' 蒙特卡罗模拟 投点法计算圆周率 ''' # 投点游戏 def play_game(): # 圆 r ...

  10. Docker_容器化gitlab

    Docker部署接口自动化持续集成环境第一步,容器化一个Gitlab! 1:开放防火墙端口 sudo yum install curl openssh-server openssh-clients p ...