1. 环境准备:

JDK1.8

hive 2.3.4

hadoop 2.7.3

hbase 1.3.3

scala 2.11.12

mysql5.7

2. 下载spark2.0.0

cd /home/worksapce/software
wget https://archive.apache.org/dist/spark/spark-2.0.0/spark-2.0.0-bin-hadoop2.7.tgz
tar -xzvf spark-2.0.-bin-hadoop2..tgz
mv spark-2.0.-bin-hadoop2. spark-2.0.

3. 配置系统环境变量

vim /etc/profile

末尾添加

#spark
export SPARK_HOME=/home/workspace/software/spark-2.0.
export PATH=:$PATH:$SPARK_HOME/bin

4. 配置spark-env.sh

cd /home/workspace/software/spark-2.0./conf
cp spark-env.sh.template spark-env.sh
vim spark-env.sh

末尾添加:

export JAVA_HOME=/usr/java/jdk1..0_172-amd64
export SCALA_HOME=/home/workspace/software/scala-2.11.
export HADOOP_HOME=/home/workspace/hadoop-2.7.
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
export YARN_CONF_DIR=$HADOOP_HOME/etc/hadoop export SPARK_HOME=/home/workspace/software/spark-2.0.
export SPARK_DIST_CLASSPATH=$(/home/workspace/hadoop-2.7./bin/hadoop classpath)
export SPARK_LIBRARY_PATH=$SPARK_HOME/lib
export SPARK_LAUNCH_WITH_SCALA= export SPARK_WORKER_DIR=$SPARK_HOME/work
export SPARK_LOG_DIR=$SPARK_HOME/logs
export SPARK_PID_DIR=$SPARK_HOME/run  export SPARK_MASTER_IP=192.168.1.101
export SPARK_MASTER_HOST=192.168.1.101
export SPARK_MASTER_WEBUI_PORT=
export SPARK_MASTER_PORT= export SPARK_LOCAL_IP=192.168.1.101 export SPARK_WORKER_CORES=
export SPARK_WORKER_PORT= export SPARK_WORKER_MEMORY=4g
export SPARK_DRIVER_MEMORY=4g
export SPARK_EXECUTOR_MEMORY=4g

5. 配置spark-defaults.conf

cd /home/workspace/software/spark-2.0./conf
cp spark-defaults.conf.template spark-defaults.conf
vim spark-defaults.conf

末尾添加

spark.master                     spark://192.168.1.101:7077
spark.eventLog.enabled true
spark.eventLog.dir hdfs://192.168.1.101:9000/spark-log
spark.serializer org.apache.spark.serializer.KryoSerializer
spark.executor.memory 4g
spark.driver.memory 4g
spark.executor.extraJavaOptions -XX:+PrintGCDetails -Dkey=value -Dnumbers="one two three"

6. 配置slaves

cd /home/workspace/software/spark-2.0./conf
cp slaves.template slaves
vim slaves

末尾添加

192.168.1.101
192.168.1.102
192.168.1.103

7. 创建相关目录(在spark-env.sh中定义)

hdfs dfs  -mkdir  -p   /spark-log
hdfs dfs -chmod /spark-log
mkdir -p $SPARK_HOME/work $SPARK_HOME/logs $SPARK_HOME/run
mkdir -p $HIVE_HOME/logs

8.修改hive-site.xml

vim $HIVE_HOME/conf/hive-site.xml

把文件内容修改为

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>hive.metastore.schema.verification</name>
<value>false</value>
</property>
<property>
<name>hive.metastore.warehouse.dir</name>
<value>/hive/warehouse</value>
<description>location of default database for the warehouse</description>
</property>
<property>
<name>hive.exec.scratchdir</name>
<value>/hive/tmp</value>
<description>Scratch space for Hive jobs</description>
</property>
<property>
<name>hive.querylog.location</name>
<value>/hive/log</value>
</property>
<property>
<name>hive.metastore.uris</name>
<value>thrift://192.168.1.103:9083</value>
</property>
<!--hive server2 settings-->
<property>
<name>hive.server2.thrift.bind.host</name>
<value>192.168.1.103</value>
</property>
<property>
<name>hive.server2.thrift.port</name>
<value>10000</value>
</property>
<property>
<name>hive.server2.webui.host</name>
<value>192.168.1.103</value>
</property>
<property>
<name>hive.server2.webui.host.port</name>
<value>10002</value>
</property>
<property>
<name>hive.server2.long.polling.timeout</name>
<value>5000</value>
</property>
<property>
<name>hive.server2.enable.doAs</name>
<value>true</value>
</property>
<!--metadata database connection string settings-->
<property>
<name>javax.jdo.option.ConnectionURL</name>
<value>jdbc:mysql://192.168.1.103:3308/hive?createDatabaseIfNotExist=true</value>
</property>
<property>
<name>javax.jdo.option.ConnectionDriverName</name>
<value>com.mysql.jdbc.Driver</value>
</property>
<property>
<name>javax.jdo.option.ConnectionUserName</name>
<value>hive</value>
</property>
<property>
<name>javax.jdo.option.ConnectionPassword</name>
<value>hive</value>
</property>
<property>
<name>datanucleus.autoCreateSchema </name>
<value>false</value>
<description>creates necessary schema on a startup if one doesn't exist. set this to false, after creating it once</description>
</property>
<property>
<name>datanucleus.fixedDatastore</name>
<value>true</value>
</property>
<!-- hive on mr-->
<!--
<property>
<name>mapred.job.tracker</name>
<value>http://192.168.1.101:9001</value>
</property>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
-->
<!--hive on spark or spark on yarn -->
<property>
<name>hive.execution.engine</name>
<value>spark</value>
</property>
<property>
<name>spark.home</name>
<value>/home/workspace/software/spark-2.0.0</value>
</property>
<property>
<name>spark.master</name>
<value>spark://192.168.1.101:7077</value>
<!-- 或者yarn-cluster/yarn-client -->
</property>
<property>
<name>spark.submit.deployMode</name>
<value>client</value>
</property>
<property>
<name>spark.eventLog.enabled</name>
<value>true</value>
</property>
<property>
<name>spark.eventLog.dir</name>
<value>hdfs://192.168.1.101:9000/spark-log</value>
</property>
<property>
<name>spark.serializer</name>
<value>org.apache.spark.serializer.KryoSerializer</value>
</property>
<property>
<name>spark.executor.memeory</name>
<value>4g</value>
</property>
<property>
<name>spark.driver.memeory</name>
<value>4g</value>
</property>
<property>
<name>spark.executor.extraJavaOptions</name>
<value>-XX:+PrintGCDetails -Dkey=value -Dnumbers="one two three"</value>
</property>
<!--concurrency support-->
<property>
<name>hive.support.concurrency</name>
<value>true</value>
<description>Whether hive supports concurrency or not. A zookeeper instance must be up and running for the default hive lock manager to support read-write locks.</description>
</property>
<property>
<name>hive.exec.dynamic.partition.mode</name>
<value>nonstrict</value>
</property>
<!--transaction support-->
<property>
<name>hive.txn.manager</name>
<value>org.apache.hadoop.hive.ql.lockmgr.DbTxnManager</value>
</property>
<property>
<name>hive.compactor.initiator.on</name>
<value>true</value>
</property>
<property>
<name>hive.compactor.worker.threads</name>
<value>1</value>
</property>
<property>
<name>hive.stats.autogather</name>
<value>true</value>
<description>A flag to gather statistics automatically during the INSERT OVERWRITE command.</description>
</property>
<!--hive web interface settings, I think this is useless,so comment it-->
<!--
<property>
<name>hive.hwi.listen.host</name>
<value>192.168.1.131</value>
</property>
<property>
<name>hive.hwi.listen.port</name>
<value>9999</value>
</property>
<property>
<name>hive.hwi.war.file</name>
<value>lib/hive-hwi-2.1.1.war</value>
</property>
-->
</configuration>

9. 拷贝hive-site.xml到spark/conf下

cp $HIVE_HOME/conf/hive-site.xml $SPARK_HOME/conf

10 分发到192.168.1.102,192.168.1.103

 cd /home/workspace/software/
scp -r spark-2.0. 192.168.1.102:/home/workspace/software
scp -r spark-2.0. 192.168.1.103:/home/workspace/software

修改102,103上的SPARK_LOCAL_IP值

vim /home/workspace/software/spark-2.0./conf/spark-env.sh

将SPARK_LOCAL_IP分别改为192.168.1.102,192.168.1.103

11 将mysql jar包复制到$SPARK_HOME/lib目录下(每台机器都要做)

cp $HIVE_HOME/lib/mysql-connector-java-5.1..jar $SPARK_HOME/lib

注:本例中之前已经安装好hive,如果没有,请到mysql官网网站下载对应的jdbc jar包

12. 启动spark集群

在spark master节点上(本例为192.168.1.101)执行下面语句

$SPARK_HOME/sbin/start-all.sh

192.168.1.101

192.168.1.102:

192.168.1.103:

浏览器打开http:192.168.1.101:18080

13.测试使用

[druid@palo101 apache-maven-3.6.]$ hive
/tmp/druid
Logging initialized using configuration in file:/home/workspace/software/apache-hive-2.3./conf/hive-log4j2.properties Async: true
hive> use kylin_flat_db;
OK
Time taken: 1.794 seconds
hive> desc kylin_sales;
OK
trans_id bigint
part_dt date Order Date
lstg_format_name string Order Transaction Type
leaf_categ_id bigint Category ID
lstg_site_id int Site ID
slr_segment_cd smallint
price decimal(,) Order Price
item_count bigint Number of Purchased Goods
seller_id bigint Seller ID
buyer_id bigint Buyer ID
ops_user_id string System User ID
ops_region string System User Region
Time taken: 0.579 seconds, Fetched: row(s)
hive> select trans_id, sum(price) as total, count(seller_id) as cnt from kylin_sales group by trans_id order by cnt desc limit 10;
Query ID = druid_20190209000716_9676460c-1a76-456d-9bd6-b6f557d5e02c
Total jobs =
Launching Job out of
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
set mapreduce.job.reduces=<number>
Starting Spark Job = 72720bf1-750d-4f6f-bf9c-5cffa0e4c73b Query Hive on Spark job[] stages: [, , ] Status: Running (Hive on Spark job[])
--------------------------------------------------------------------------------------
STAGES ATTEMPT STATUS TOTAL COMPLETED RUNNING PENDING FAILED
--------------------------------------------------------------------------------------
Stage- ........ FINISHED
Stage- ........ FINISHED
Stage- ........ FINISHED
--------------------------------------------------------------------------------------
STAGES: / [==========================>>] % ELAPSED TIME: 10.12 s
--------------------------------------------------------------------------------------
Status: Finished successfully in 10.12 seconds
OK
33.4547
15.4188
88.6492
40.4308
63.5407
59.2537
79.8884
18.3204
78.6241
5.8088
Time taken: 21.788 seconds, Fetched: row(s)
hive>

13 FAQ:

13.1  如果在使用过程中遇到类似下面的错误

Exception in thread "main" java.lang.NoSuchFieldError: SPARK_RPC_SERVER_ADDRESS

通过查看hive的日志文件(在/tmp/{user}/hive.log),这是因为默认使用的spark安装包是继承了hive的包,名字为spark-xxx-bin-hadoopxx.xx.tgz都是继承了hive的包,在hive on spark模式下,会出现冲突,解决办法有两个:
1) 手动编译spark不包含hive的包,具体请参见本人的博文Spark2.0.0源码编译,编译指令为:

./make-distribution.sh  --name "hadoop2.7.3-without-hive"   --tgz  -Dhadoop.version=2.7.    -Dscala-2.11    -Phadoop-2.7  -Pyarn      -DskipTests clean package

用编译出来的包来安装。

2) 删除预编译包中hive的jar包,具体操作为:

cd $SPARK_HOME/jars
rm -f hive-*
rm -rf spark-hive_*
#删除下面6个文件
# hive-beeline-1.2..spark2.jar
# hive-cli-1.2..spark2.jar
# hive-exec-1.2..spark2.jar
# hive-jdbc-1.2..spark2.jar
# hive-metastore-1.2..spark2.jar
# spark-hive_2.-2.0..jar
# spark-hive-thriftserver_2.-2.0..jar

注意:每台机器都要做.

13.2 如果出现类似下面的错误

Exception in thread "main" java.lang.NoClassDefFoundError: scala/collection/Iterable
at org.apache.hadoop.hive.ql.optimizer.spark.SetSparkReducerParallelism.getSparkMemoryAndCores(SetSparkReducerParallelism.java:)
at org.apache.hadoop.hive.ql.optimizer.spark.SetSparkReducerParallelism.process(SetSparkReducerParallelism.java:)
at org.apache.hadoop.hive.ql.lib.DefaultRuleDispatcher.dispatch(DefaultRuleDispatcher.java:)
at org.apache.hadoop.hive.ql.lib.DefaultGraphWalker.dispatchAndReturn(DefaultGraphWalker.java:)
at org.apache.hadoop.hive.ql.lib.DefaultGraphWalker.dispatch(DefaultGraphWalker.java:)
at org.apache.hadoop.hive.ql.lib.PreOrderWalker.walk(PreOrderWalker.java:)
at org.apache.hadoop.hive.ql.lib.PreOrderWalker.walk(PreOrderWalker.java:)
at org.apache.hadoop.hive.ql.lib.PreOrderWalker.walk(PreOrderWalker.java:)
at org.apache.hadoop.hive.ql.lib.PreOrderWalker.walk(PreOrderWalker.java:)
at org.apache.hadoop.hive.ql.lib.DefaultGraphWalker.startWalking(DefaultGraphWalker.java:)
at org.apache.hadoop.hive.ql.parse.spark.SparkCompiler.runSetReducerParallelism(SparkCompiler.java:)
at org.apache.hadoop.hive.ql.parse.spark.SparkCompiler.optimizeOperatorPlan(SparkCompiler.java:)
at org.apache.hadoop.hive.ql.parse.TaskCompiler.compile(TaskCompiler.java:)
at org.apache.hadoop.hive.ql.parse.SemanticAnalyzer.analyzeInternal(SemanticAnalyzer.java:)
at org.apache.hadoop.hive.ql.parse.CalcitePlanner.analyzeInternal(CalcitePlanner.java:)
at org.apache.hadoop.hive.ql.parse.BaseSemanticAnalyzer.analyze(BaseSemanticAnalyzer.java:)
at org.apache.hadoop.hive.ql.Driver.compile(Driver.java:)
at org.apache.hadoop.hive.ql.Driver.compileInternal(Driver.java:)
at org.apache.hadoop.hive.ql.Driver.runInternal(Driver.java:)
at org.apache.hadoop.hive.ql.Driver.run(Driver.java:)
at org.apache.hadoop.hive.ql.Driver.run(Driver.java:)
at org.apache.hadoop.hive.cli.CliDriver.processLocalCmd(CliDriver.java:)
at org.apache.hadoop.hive.cli.CliDriver.processCmd(CliDriver.java:)
at org.apache.hadoop.hive.cli.CliDriver.processLine(CliDriver.java:)
at org.apache.hadoop.hive.cli.CliDriver.executeDriver(CliDriver.java:)
at org.apache.hadoop.hive.cli.CliDriver.run(CliDriver.java:)
at org.apache.hadoop.hive.cli.CliDriver.main(CliDriver.java:)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:)
at java.lang.reflect.Method.invoke(Method.java:)
at org.apache.hadoop.util.RunJar.run(RunJar.java:)
at org.apache.hadoop.util.RunJar.main(RunJar.java:)
Caused by: java.lang.ClassNotFoundException: scala.collection.Iterable
at java.net.URLClassLoader.findClass(URLClassLoader.java:)
at java.lang.ClassLoader.loadClass(ClassLoader.java:)
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:)
at java.lang.ClassLoader.loadClass(ClassLoader.java:)

这是因为hive无法加载spark的jar包,解决办法为:

$HIVE_HOME/bin/hive

在执行hive之前添加下面的语句,把spark的jar包添加到hive的class path中

SPARK_HOME=/home/workspace/software/spark-2.0.
for f in ${SPARK_HOME}/jars/*.jar; do
CLASSPATH=${CLASSPATH}:$f;
done

本人添加的位置为:

或者直接把$SPARK_HOME/jars/spark*复制到$HIVE_HOME/lib下,

cp $SPARK_HOME/jars/spark*   $HIVE_HOME/lib

个人感觉修改hive启动脚本更好一些。

14 参考资料

https://www.jianshu.com/p/a7f75b868568

spark 2.0.0集群安装与hive on spark配置的更多相关文章

  1. 菜鸟玩云计算之十九:Hadoop 2.5.0 HA 集群安装第2章

    菜鸟玩云计算之十九:Hadoop 2.5.0 HA 集群安装第2章 cheungmine, 2014-10-26 在上一章中,我们准备好了计算机和软件.本章开始部署hadoop 高可用集群. 2 部署 ...

  2. 菜鸟玩云计算之十八:Hadoop 2.5.0 HA 集群安装第1章

    菜鸟玩云计算之十八:Hadoop 2.5.0 HA 集群安装第1章 cheungmine, 2014-10-25 0 引言 在生产环境上安装Hadoop高可用集群一直是一个需要极度耐心和体力的细致工作 ...

  3. Kafka0.10.2.0分布式集群安装

    一.依赖文件安装 1.1 JDK 参见博文:http://www.cnblogs.com/liugh/p/6623530.html 1.2 Scala 参见博文:http://www.cnblogs. ...

  4. hadoop 2.2.0集群安装详细步骤(简单配置,无HA)

    安装环境操作系统:CentOS 6.5 i586(32位)java环境:JDK 1.7.0.51hadoop版本:社区版本2.2.0,hadoop-2.2.0.tar.gz 安装准备设置集群的host ...

  5. Redis Cluster 4.0.9 集群安装搭建

    Redis Cluster 4.0.9集群搭建步骤:yum install -y gcc g++ gcc-c++ make openssl cd redis-4.0.9 make mkdir -p / ...

  6. Spark On YARN 分布式集群安装

    一.导读 最近开始学习大数据分析,说到大数据分析,就必须提到Hadoop与Spark.要研究大数据分析,就必须安装这两个软件,特此记录一下安装过程.Hadoop使用V2版本,Hadoop有单机.伪分布 ...

  7. Apache Hadoop集群安装(NameNode HA + SPARK + 机架感知)

    1.主机规划 序号 主机名 IP地址 角色 1 nn-1 192.168.9.21 NameNode.mr-jobhistory.zookeeper.JournalNode 2 nn-2 ).HA的集 ...

  8. Spark2.1.0分布式集群安装

    一.依赖文件安装 1.1 JDK 参见博文:http://www.cnblogs.com/liugh/p/6623530.html 1.2 Hadoop 参见博文:http://www.cnblogs ...

  9. redis4.0.1集群安装部署

    安装环境 序号 项目 值 1 OS版本 Red Hat Enterprise Linux Server release 7.1 (Maipo) 2 内核版本 3.10.0-229.el7.x86_64 ...

随机推荐

  1. mysql中 where in 用法详解

    这里分两种情况来介绍 1.in 后面是记录集,如: select  *  from  table  where   uname  in(select  uname  from  user); 2.in ...

  2. MySQL 数据类型对比:char 与 varchar;varchar 与 text;datetime 与 timestamp;blob 与 text;

    char 与 varchar char(n) 若存入字符数小于n,则以空格补于其后,查询之时再将空格去掉.所以 char 类型存储的字符串末尾不能有空格,varchar 不限于此. char(n) 固 ...

  3. Centos 7 Saltstack 集群

    一. Saltstack  双master master1 -------------------master2 | minion master1 1.yum -y install  salt-mas ...

  4. 深入解析 ext2 文件系统 (转)

    http://blog.chinaunix.net/uid-24774106-id-3266816.html 很久以来,就想写一篇关于ext 家族文件系统的文章,源于我刚工作的时候,曾经一不小心rm ...

  5. java-http通信调用与创建

    java项目使用HTTP的请求.主要有两种方式:①使用JDK自带的java.net包下的HttpURLConnection方式. ②使用apache的HttpClient方式. 一.使用JDK自带的j ...

  6. Zuul Pre和Post过滤器

    一.项目架构图 二.前置过滤器 @Component public class TokenFilter extends ZuulFilter{ @Override public String filt ...

  7. php exec返回状态为1

    之前在用到php exec 时 总是保存,返回状态1,那这时怎么排查呢 exec('ls 2>&1', $output, $return_val); print_r($output); ...

  8. Thinkphp 视图模型

    1.创建视图模型 2.定义视图模型 class BlogViewModel extends ViewModel { public $viewFields = array( 'Blog'=>arr ...

  9. 最短路径算法——Dijkstra算法与Floyd算法

    转自:https://www.cnblogs.com/smile233/p/8303673.html 最短路径 ①在非网图中,最短路径是指两顶点之间经历的边数最少的路径. AE:1    ADE:2  ...

  10. 用Matlab进行部分分式展开

    [r p k]=residue[num,den] 例如H(s)=(2s3+5s2+3s+6)/(s3+6s2+11s+6) num=[2 5 3 6]; den=[1 6 11 6]; [r p k] ...