[清华集训2015 Day1]玛里苟斯-[线性基]
Description

Solution
考虑k=1的情况。假设所有数中,第i位为1的数的个数为x,则最后所有的子集异或结果中,第i位为1的个数为$(C_{k}^{1}+C_{k}^{3}+...)$*2原本的数中第i位为0的数的个数。同理,所有子集异或结果中第i位为0的个数为$(C_{k}^{0}+C_{k}^{2}+...)$*2原本的数中第i位为0的数的个数。
由于二项式定理,可得前后两个式子大小相等。即对于每一位i,如果该位有某个(些)数为1,ans+=10i-1/2。
k=2同理。
对于k>2,我们发现假如某个数能够由其他若干个数异或而得,那么把这个数删掉对答案没有影响。可以用线性基。
Code
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const int N=1e5+;
typedef unsigned long long ull;
int n,k,R;ull a[N];
ull b[];int cnt;
ull _ans,_res;
void dfs(int x,ull c)
{
if (x==cnt+)
{
ull num=,yu=;
for (int i=;i<=k;i++)
{
num*=c;yu*=c;
num+=yu>>cnt;yu&=R;
}
_res+=yu;
_ans+=num+(_res>>cnt);
_res&=R;
return;
}
dfs(x+,c);
dfs(x+,c^b[x]);
}
int main()
{
scanf("%d%d",&n,&k);
for (int i=;i<=n;i++) scanf("%llu",&a[i]);
if (k==)
{
ull t=;
for (int i=;i<=n;i++) t|=a[i];
printf("%llu%s",t>>,t&?".5":);return ;
}
if (k==)
{
ull t=,ans=;
for (int i=;i<=n;i++) t|=a[i];
for (int i=;i<;i++) for (int j=i;j<;j++)
if (t>>i&&t>>j) ans+=1ull<<(i+j);
printf("%llu%s",ans>>,ans&?".5":);return ;
}
ull t[];
memset(t,,sizeof(t));
for (int i=;i<=n;i++)
for (int j=;j>=;j--)
{
if (a[i]&(<<j)) if (!t[j]) {t[j]=a[i];break;}
a[i]^=t[j];
}
for (int i=;i<=;i++) if (t[i]) b[++cnt]=t[i];
R=(<<cnt)-;
dfs(,);
if (_res) printf("%llu.5",_ans);else printf("%llu",_ans);
}
[清华集训2015 Day1]玛里苟斯-[线性基]的更多相关文章
- UOJ#36. 【清华集训2014】玛里苟斯 线性基
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ36.html 题解 按照 $k$ 分类讨论: k=1 : 我们考虑每一位的贡献.若有至少一个数第 $i$ ...
- [清华集训2015 Day1]主旋律-[状压dp+容斥]
Description Solution f[i]表示状态i所代表的点构成的强连通图方案数. g[i]表示状态i所代表的的点形成奇数个强连通图的方案数-偶数个强连通图的方案数. g是用来容斥的. 先用 ...
- 清华集训2015 V
#164. [清华集训2015]V http://uoj.ac/problem/164 统计 描述 提交 自定义测试 Picks博士观察完金星凌日后,设计了一个复杂的电阻器.为了简化题目,题目中的常数 ...
- 「清华集训2015」V
「清华集训2015」V 题目大意: 你有一个序列,你需要支持区间加一个数并对 \(0\) 取 \(\max\),区间赋值,查询单点的值以及单点历史最大值. 解题思路: 观察发现,每一种修改操作都可以用 ...
- uoj#36. 【清华集训2014】玛里苟斯(线性基+概率期望)
传送门 为啥在我看来完全不知道为什么的在大佬们看来全都是显然-- 考虑\(k=1\)的情况,如果序列中有某一个\(a_j\)的第\(i\)位为\(1\),那么\(x\)的第\(i\)位为\(1\)的概 ...
- UOJ #36 -【清华集训2014】玛里苟斯(线性基+暴搜)
UOJ 题面传送门 看到 \(k\) 次方的期望可以很自然地想到利用低次方和维护高次方和的套路进行处理,不过.由于这里的 \(k\) 达到 \(5\),直接这么处理一来繁琐,二来会爆 long lon ...
- 【bzoj3811】【清华集训2014】玛里苟斯
3811: 玛里苟斯 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 500 Solved: 196[Submit][Status][Discuss] ...
- UOJ #36「清华集训2014」玛里苟斯
这怎么想得到啊......... UOJ #36 题意:求随机一个集合的子集的异或和的$k$次方的期望值,保证答案$ \lt 2^{63},1 \leq k \leq 5$ $ Solution:$ ...
- BZOJ.3811.玛里苟斯(线性基)
BZOJ UOJ 感觉网上大部分题解对我这种数学基础差的人来说十分不友好...(虽然理解后也觉得没有那么难) 结合两篇写的比较好的详细写一写.如果有错要指出啊QAQ https://blog.csdn ...
随机推荐
- MySQL——优化ORDER BY语句
本篇文章我们将了解ORDER BY语句的优化,在此之前,你需要对索引有基本的了解,不了解的朋友们可以先看一下我之前写过的索引相关文章.现在让我们开始吧. MySQL中的两种排序方式 1.通过有序索引顺 ...
- VS插件VisualSVN v5.2.3.0 破解文件
分享一个VisualSVN v5.2.3的破解文件: >>>> 点此下载 <<<< 下载后,找到VisualSVN的安装目录,例如:C:\Program ...
- Sql server 账号被锁住:"the account is currently locked out. The system administrator can unlock it."的解决办法(转载)
今天遇到的问题比较有意思.首先是很久没有打开测试数据库了,今天打开,使用service程序测试的时候出现下面的错误提示:Message: System.Data.SqlClient.SqlExcept ...
- 【转】HTTP学习---图解HTTP[三次握手&&ISO模型]
[转]https://www.toutiao.com/i6592556686068679182/ 首先了解一次完整的HTTP请求到响应的过程需要的步骤: 1. 域名解析 2. 发起TCP的3次握手 3 ...
- mysql 5.7.16 忘记root 密码 如何修改root密码
今天在电脑上安装 mysql5.7.16 (压缩包)时,在初始化data文件夹之后,没有记住密码,DOS框没有显示,没办法,为了学习一下怎么修改密码,在网上找了好多方法去解决,最终还是解决了,下面来 ...
- Iterator迭代器对象
目录: >迭代器Iterator的使用 >迭代字符串集合 >迭代对象集合 >迭代器使用图解,和原理分析 >Java迭代器源代码 >迭代器Iterator的使用: & ...
- [Python] 启动 uiautomatorviewer2之后,连接成功后重新 reload画面时提示 ('Connection aborted.', error(10054, ''))
[问题] 出现该问题不管是重启手机还是启动手机里面 uiautomator的服务,都无济于事,只有通过下面方法进行重新初使化方能解决问题 [解决方法] 在命令窗口执行如下命令 python -m ui ...
- ftp传输文件到指定服务器
#!/bin/bash filePrefix="dbname"localDir="/DBBackup"remoteDir="/Backup" ...
- Linux备份压缩命令
gzip 命令 把/home/chenjialins目录下的familyA目录下所有文件压缩成.gz文件cd /home/chenjialinstar -cvf /home/chenjialins/f ...
- MetaMask/provider-engine-1
https://github.com/MetaMask/provider-engine 在学习这个之前应该先看一下什么是zero-client,MetaMask/zero-client Web3 Pr ...
