拓展Lucas定理解决大组合数取模并且模数为任意数的情况

大概的思路是把模数用唯一分解定理拆开之后然后去做

然后要解决的一个子问题是求模质数的k次方

将分母部分转化成逆元再去做就好了

 #include<bits/stdc++.h>
using namespace std;
const int maxn = + ;
typedef long long LL; LL Pow(LL n, LL m, LL mod) {
LL ans = ;
while(m > ) {
if(m & ) ans = (LL)ans * n % mod;
n = (LL)n * n % mod; m >>= ;
}
return ans;
}
LL Pow(LL n,LL m) {
LL ans = ;
while(m > ) {
if(m & ) ans = ans * n;
n = n * n; m >>= ;
}
return ans;
}
LL x, y;
LL exgcd(LL a, LL b) {
if(a == ) {
x = , y = ;
return b;
}LL r = exgcd(b%a, a);
LL t = x; x = y - (b/a)*x; y = t;
return r;
}
LL rev(LL a, LL b) { exgcd(a, b); return ((x % b) + b) % b; }
LL Calc(LL n, LL p, LL t) {
if(n == ) return ; LL s = Pow(p, t), k = n / s, tmp = ;
for(LL i=; i<=s; i++) if(i % p) tmp = (LL)tmp * i % s; LL ans = Pow(tmp, k, s);
for(LL i=s*k + ; i<=n; i++) if(i % p) ans = (LL)ans * i % s; return (LL)ans * Calc(n / p, p, t) % s;
}
LL C(LL n, LL m, LL p, LL t) {
LL s = Pow(p, t), q = ;
for(LL i=n; i; i/=p) q += i / p;
for(LL i=m; i; i/=p) q -= i / p;
for(LL i=n-m; i; i/=p) q -= i / p; LL ans = Pow(p, q);
LL a = Calc(n, p, t), b = Calc(m, p, t), c = Calc(n-m, p, t);
return (LL)(ans * a * rev(b, s) * rev(c, s)) % s;
}
LL China(LL A[], LL M[], LL cnt) {
LL ans = , m, n = ;
for(LL i=; i<=cnt; i++) n *= M[i];
for(LL i=; i<=cnt; i++) {
m = n / M[i];
exgcd(M[i], m);
ans = (ans + (LL)y * m * A[i]) % n;
}
return (ans + n) % n;
}
LL A[maxn], M[maxn], cnt;
LL Lucas(LL n, LL m, LL mod) {
for(LL i=; i*i <= mod; i++) if(mod % i == ) {
LL t = ;
while(mod % i == ) t++, mod /= i;
M[++cnt] = Pow(i, t);
A[cnt] = C(n, m, i, t);
}if(mod > ) {
M[++cnt] = mod;
A[cnt] = C(n, m, mod, );
}
return China(A, M, cnt);
}
LL n, k, p;
int main() {
cin >> n >> k >> p;
cout << Lucas(n, k, p) << endl;
return ;
}

然后补充一个内容,线性时间复杂度内求出所有的逆元

A[i] = -(p / i) * A[p % i];

数学:拓展Lucas定理的更多相关文章

  1. 【bzoj2142】【礼物】拓展Lucas定理+孙子定理

    (上不了p站我要死了,侵权度娘背锅) Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同,在小E心中分量 ...

  2. 数学:lucas定理的总结

    今天考试的题目中有大组合数取模,不会唉,丢了45分,我真是个弱鸡,现在还不会lucas. 所以今天看了一下,定理差不多是: (1)Lucas定理:p为素数,则有: 即:lucas(n,m,p)=c(n ...

  3. 数学:Lucas定理

    利用Lucas定理解决大组合数取模 Lucas定理是用来求 C(n,m) mod p,p为素数的值.(注意:p一定是素数) Lucas定理用来解决大组合数求模是很有用的 Lucas定理最大的数据处理能 ...

  4. 【BZOJ-2142】礼物 拓展Lucas定理

    2142: 礼物 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1313  Solved: 541[Submit][Status][Discuss] ...

  5. lucas定理及其拓展的推导

    lucas定理及其拓展的推导 我的前一篇博客-- lucas定理 https://mp.csdn.net/mdeditor/100550317#主要是给出了lucas的结论和模板,不涉及推导. 本篇文 ...

  6. 『Lucas定理以及拓展Lucas』

    Lucas定理 在『组合数学基础』中,我们已经提出了\(Lucas\)定理,并给出了\(Lucas\)定理的证明,本文仅将简单回顾,并给出代码. \(Lucas\)定理:当\(p\)为质数时,\(C_ ...

  7. Lucas定理学习小记

    (1)Lucas定理:p为素数,则有: (2)证明: n=(ak...a2,a1,a0)p = (ak...a2,a1)p*p + a0 =  [n/p]*p+a0,m=[m/p]*p+b0其次,我们 ...

  8. [Swust OJ 247]--皇帝的新衣(组合数+Lucas定理)

    题目链接:http://acm.swust.edu.cn/problem/0247/ Time limit(ms): 1000 Memory limit(kb): 65535   Descriptio ...

  9. Lucas定理学习(进阶中)

    (1)Lucas定理:p为素数,则有: (2)证明: n=(ak...a2,a1,a0)p = (ak...a2,a1)p*p + a0 =  [n/p]*p+a0,m=[m/p]*p+b0其次,我们 ...

随机推荐

  1. Java设计模式之适配器设计模式(项目升级案例)

    今天是我学习到Java设计模式中的第三个设计模式了,但是天气又开始变得狂热起来,对于我这个凉爽惯了的青藏人来说,又是非常闹心的一件事儿,好了不管怎么样,目标还是目标(争取把23种Java设计模式接触一 ...

  2. jersey2 整合 spring + hibernate + log4j2

    整合 spring jersey2 官方还未正式支持 spring4, 但网上有好多支持方案,折腾了一圈后,还是用了 spring3; pom 添加以下依赖配置 <!-- Spring --&g ...

  3. 关于python内存地址问题

    遇到一个朋友,给我提了一个问题:python中的两个相同的值,内存地址是否一样? 当时印象里有这样一句话:Python采用基于值的内存管理模式,相同的值在内存中只有一份 于是张嘴就说是一样的 朋友说不 ...

  4. DRF框架QQ登录功能

    用户模块---QQ登录 流程图 QQ登录文档:http://wiki.connect.qq.com/%E5%87%86%E5%A4%87%E5%B7%A5%E4%BD%9C_oauth2-0 流程简述 ...

  5. mui框架(三)

    1.Ajax-get请求 // get测试请求地址 http://test.dongyixueyuan.com/link_app/get?state=index&num=0 mui.get(' ...

  6. PAT甲题题解1099. Build A Binary Search Tree (30)-二叉树遍历

    题目就是给出一棵二叉搜索树,已知根节点为0,并且给出一个序列要插入到这课二叉树中,求这棵二叉树层次遍历后的序列. 用结构体建立节点,val表示该节点存储的值,left指向左孩子,right指向右孩子. ...

  7. 11.3 Daily Scrum

    今天的会议上,我们重新规划了一下每个人的分工.大家的安卓开发环境已经配置完毕,于是我们便正式开始进入代码编写的阶段. 由于修改了一下分工,之前发布的任务作废,以新发布的任务为准.   Today’s ...

  8. 冲刺Two之站立会议1

    今天我们开始了第二个冲刺期的工作,大家重新讨论了下个阶段的工作内容,由于上次演示我们主要只是实现了摄像头开启.通信和语音通话的功能,而且各部分还有待完善.所以我们决定了之后的主要工作的内容:之前服务器 ...

  9. 软件工程团队项目第一次Sprint评审

    第一组:9-652 作品:炸弹人 评价:已经完成了界面的设计和基本功能,游戏已初具雏形.这款游戏可玩性很强,是个很不错的项目.但是对游戏并没有进行深入开发,不能持续的吸引玩家的兴趣,容易引起玩家的厌倦 ...

  10. 03-java学习-基本数据类型-运算符-键盘接收用户输入

    java的八大基本数据类型: 类型转换的基本原则: java整数的默认类型是int,小数的默认类型是double 运算符: 算术运算符.连接.赋值.关系.逻辑.三目运算符等…… 键盘接收用户输入: j ...