数学:拓展Lucas定理
拓展Lucas定理解决大组合数取模并且模数为任意数的情况
大概的思路是把模数用唯一分解定理拆开之后然后去做
然后要解决的一个子问题是求模质数的k次方
将分母部分转化成逆元再去做就好了
#include<bits/stdc++.h>
using namespace std;
const int maxn = + ;
typedef long long LL; LL Pow(LL n, LL m, LL mod) {
LL ans = ;
while(m > ) {
if(m & ) ans = (LL)ans * n % mod;
n = (LL)n * n % mod; m >>= ;
}
return ans;
}
LL Pow(LL n,LL m) {
LL ans = ;
while(m > ) {
if(m & ) ans = ans * n;
n = n * n; m >>= ;
}
return ans;
}
LL x, y;
LL exgcd(LL a, LL b) {
if(a == ) {
x = , y = ;
return b;
}LL r = exgcd(b%a, a);
LL t = x; x = y - (b/a)*x; y = t;
return r;
}
LL rev(LL a, LL b) { exgcd(a, b); return ((x % b) + b) % b; }
LL Calc(LL n, LL p, LL t) {
if(n == ) return ; LL s = Pow(p, t), k = n / s, tmp = ;
for(LL i=; i<=s; i++) if(i % p) tmp = (LL)tmp * i % s; LL ans = Pow(tmp, k, s);
for(LL i=s*k + ; i<=n; i++) if(i % p) ans = (LL)ans * i % s; return (LL)ans * Calc(n / p, p, t) % s;
}
LL C(LL n, LL m, LL p, LL t) {
LL s = Pow(p, t), q = ;
for(LL i=n; i; i/=p) q += i / p;
for(LL i=m; i; i/=p) q -= i / p;
for(LL i=n-m; i; i/=p) q -= i / p; LL ans = Pow(p, q);
LL a = Calc(n, p, t), b = Calc(m, p, t), c = Calc(n-m, p, t);
return (LL)(ans * a * rev(b, s) * rev(c, s)) % s;
}
LL China(LL A[], LL M[], LL cnt) {
LL ans = , m, n = ;
for(LL i=; i<=cnt; i++) n *= M[i];
for(LL i=; i<=cnt; i++) {
m = n / M[i];
exgcd(M[i], m);
ans = (ans + (LL)y * m * A[i]) % n;
}
return (ans + n) % n;
}
LL A[maxn], M[maxn], cnt;
LL Lucas(LL n, LL m, LL mod) {
for(LL i=; i*i <= mod; i++) if(mod % i == ) {
LL t = ;
while(mod % i == ) t++, mod /= i;
M[++cnt] = Pow(i, t);
A[cnt] = C(n, m, i, t);
}if(mod > ) {
M[++cnt] = mod;
A[cnt] = C(n, m, mod, );
}
return China(A, M, cnt);
}
LL n, k, p;
int main() {
cin >> n >> k >> p;
cout << Lucas(n, k, p) << endl;
return ;
}
然后补充一个内容,线性时间复杂度内求出所有的逆元
A[i] = -(p / i) * A[p % i];
数学:拓展Lucas定理的更多相关文章
- 【bzoj2142】【礼物】拓展Lucas定理+孙子定理
(上不了p站我要死了,侵权度娘背锅) Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同,在小E心中分量 ...
- 数学:lucas定理的总结
今天考试的题目中有大组合数取模,不会唉,丢了45分,我真是个弱鸡,现在还不会lucas. 所以今天看了一下,定理差不多是: (1)Lucas定理:p为素数,则有: 即:lucas(n,m,p)=c(n ...
- 数学:Lucas定理
利用Lucas定理解决大组合数取模 Lucas定理是用来求 C(n,m) mod p,p为素数的值.(注意:p一定是素数) Lucas定理用来解决大组合数求模是很有用的 Lucas定理最大的数据处理能 ...
- 【BZOJ-2142】礼物 拓展Lucas定理
2142: 礼物 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1313 Solved: 541[Submit][Status][Discuss] ...
- lucas定理及其拓展的推导
lucas定理及其拓展的推导 我的前一篇博客-- lucas定理 https://mp.csdn.net/mdeditor/100550317#主要是给出了lucas的结论和模板,不涉及推导. 本篇文 ...
- 『Lucas定理以及拓展Lucas』
Lucas定理 在『组合数学基础』中,我们已经提出了\(Lucas\)定理,并给出了\(Lucas\)定理的证明,本文仅将简单回顾,并给出代码. \(Lucas\)定理:当\(p\)为质数时,\(C_ ...
- Lucas定理学习小记
(1)Lucas定理:p为素数,则有: (2)证明: n=(ak...a2,a1,a0)p = (ak...a2,a1)p*p + a0 = [n/p]*p+a0,m=[m/p]*p+b0其次,我们 ...
- [Swust OJ 247]--皇帝的新衣(组合数+Lucas定理)
题目链接:http://acm.swust.edu.cn/problem/0247/ Time limit(ms): 1000 Memory limit(kb): 65535 Descriptio ...
- Lucas定理学习(进阶中)
(1)Lucas定理:p为素数,则有: (2)证明: n=(ak...a2,a1,a0)p = (ak...a2,a1)p*p + a0 = [n/p]*p+a0,m=[m/p]*p+b0其次,我们 ...
随机推荐
- 设计模式 笔记 策略模式 Strategy
//---------------------------15/04/28---------------------------- //Strategy 策略模式----对象行为型模式 /* 1:意图 ...
- Json和Map互转,四个包(org.json/net.sf.json/com.google.gson/com.alibaba.fastjson)
目前使用的(org.json/net.sf.json/com.google.gson/com.alibaba.fastjson)这四种json-map互转,其他的以后在补充.............. ...
- Scrapyd+Gerapy部署Scrapy爬虫进行可视化管理
Scrapy是一个流行的爬虫框架,利用Scrapyd,可以将其部署在远程服务端运行,并通过命令对爬虫进行管理,而Gerapy为我们提供了精美的UI,可以在web页面上直接点击操作,管理部署在scrap ...
- 数据平面可编程与SDN关系理解,以及数据平面可编程的理解
数据平面可编程与SDN关系 狭义 广义 数据平面可编程的理解 狭义 广义
- C语言入门:04.数据类型、常量、变量
一.数据 1.什么是数据 生活中时时刻刻都在跟数据打交道,比如体重数据.血压数据.股价数据等.在我们使用计算机的过程中,会接触到各种各样的数据,有文档数据.图片数据.视频数据,还有聊QQ时产生的文字数 ...
- C# 多线程初级汇总
异步委托 创建线程的一种简单方式是定义一个委托,并异步调用它 委托是方法的类型安全的引用 Delegate类还支持异步地调用方法.在后台,Delegate类会创建一个执行任务的线程 投票,并检查委托是 ...
- ESLint的使用
ESLint是在ECMAScript/JavaScript代码中识别和报告模式匹配的工具,它的目标是保证代码的一致性和避免错误.在许多方面,它和JSLint.JSHint相似,除了少数的例外: ESL ...
- 深入理解ajax系列第八篇——表单提交
前面的话 在以前,网站的用户与后端交互的主要方式是通过HTML表单的使用.表单的引入在1993年,由于其简单性和易用性,直到电子商务出现之前一直保持着重要位置.理解表单提交,对于更深入地理解ajax是 ...
- 51nod 1476 括号序列的最小代价(贪心+优先队列)
题意 我们这有一种仅由"(",")"和"?"组成的括号序列,你必须将"?"替换成括号,从而得到一个合法的括号序列. 对于 ...
- hdwiki 部署
1.安装wamp 集成环境(部署过程出现的环境问题请搜索我的另外一篇文章 <wamp安装失败原因大全>)2.到 http://kaiyuan.hudong.com/download/ 下载 ...