cf711D. Directed Roads(环)
题意
\(n\)个点\(n\)条边的图,有多少种方法给边定向后没有环
Sol
一开始傻了,以为只有一个环。。。实际上N个点N条边还可能是基环树森林。。
做法挺显然的:找出所有的环,设第\(i\)个环的大小为\(w_i\)
\(ans = 2^{N - \sum w_i} \prod (2^{w_i} - 2)\)
最后减掉的2是形成环的情况
#include<bits/stdc++.h>
#define Pair pair<int, int>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
#define int long long
#define LL long long
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
//#define getchar() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1<<22, stdin), p1 == p2) ? EOF : *p1++)
//char buf[(1 << 22)], *p1 = buf, *p2 = buf;
using namespace std;
const int MAXN = 1e6 + 10, mod = 1e9 + 7, INF = 1e9 + 10;
const double eps = 1e-9, PI = acos(-1);
template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
template <typename A> inline void debug(A a){cout << a << '\n';}
template <typename A> inline LL sqr(A x){return 1ll * x * x;}
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = (x * 10 + c - '0') % mod, c = getchar();
return x * f;
}
int N, dep[MAXN], w[MAXN], top, po2[MAXN], vis[MAXN];
vector<int> v[MAXN];
void dfs(int x, int d) {
dep[x] = d; vis[x] = 1;
for(auto &to : v[x]) {
if(!vis[to])dfs(to, d + 1);
else if(vis[to] == 1) w[++top] = dep[x] - dep[to] + 1;
}
vis[x] = 2;
}
signed main() {
N = read();
po2[0] = 1;
for(int i = 1; i <= N; i++) po2[i] = mul(2, po2[i - 1]);
for(int i = 1; i <= N; i++) {
int x = read();
v[i].push_back(x);
}
for(int i = 1; i <= N; i++)
if(!dep[i])
dfs(i, 1);
int sum = 0, res = 1;
for(int i = 1; i <= top; i++) sum += w[i], res = mul(res, po2[w[i]] - 2 + mod);
printf("%d\n", mul(po2[N - sum], res));
return 0;
}
cf711D. Directed Roads(环)的更多相关文章
- Codeforces Round #369 (Div. 2) D. Directed Roads dfs求某个联通块的在环上的点的数量
D. Directed Roads ZS the Coder and Chris the Baboon has explored Udayland for quite some time. The ...
- Codeforces Round #369 (Div. 2) D. Directed Roads —— DFS找环 + 快速幂
题目链接:http://codeforces.com/problemset/problem/711/D D. Directed Roads time limit per test 2 seconds ...
- Codeforces #369 div2 D.Directed Roads
D. Directed Roads time limit per test2 seconds memory limit per test256 megabytes inputstandard inpu ...
- CodeForces #369 div2 D Directed Roads DFS
题目链接:D Directed Roads 题意:给出n个点和n条边,n条边一定都是从1~n点出发的有向边.这个图被认为是有环的,现在问你有多少个边的set,满足对这个set里的所有边恰好反转一次(方 ...
- codeforces 711D D. Directed Roads(dfs)
题目链接: D. Directed Roads time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- Code Forces 711D Directed Roads
D. Directed Roads time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...
- Directed Roads
Directed Roads 题目链接:http://codeforces.com/contest/711/problem/D dfs 刚开始的时候想歪了,以为同一个连通区域会有多个环,实际上每个点的 ...
- Codeforces Round #369 (Div. 2) D. Directed Roads (DFS)
D. Directed Roads time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...
- Codeforces 711D Directed Roads - 组合数学
ZS the Coder and Chris the Baboon has explored Udayland for quite some time. They realize that it co ...
随机推荐
- es6 学习小记 扩展运算符 三个点(...)
参考: es6 扩展运算符 三个点(...) 经常回顾,方能真正掌握. 一.含义 扩展运算符( spread )是三个点(...).它好比 rest 参数的逆运算,将一个数组转为用逗号分隔的参数序列. ...
- VS2013 编辑器
1. VS -> 本地Git -> Github 1. 右键单击解决方案,选择“将解决方案添加到源代码管理器”,选择Git 2. 切换到团队资源管理器([菜单]视图->团队资源管理器 ...
- Nutch抓取流程
nutch抓取流程注入起始url(inject).生成爬取列表(generate).爬取(fetch).解析网页内容(parse).更新url数据库(updatedb)1:注入起始url(inject ...
- Selenium自动化测试Python四:WebDriver封装
WebDriver 封装 欢迎阅读WebDriver封装讲义.本篇讲义将会重点介绍Selenium WebDriver API的封装的概念和方法,以及使用封装进行自动化测试的设计. WebDriver ...
- MongoDB作为windows服务来安装
首先区官网下载对应版本的安装文件,我本地的环境是win7 bit64 我下载的版本是:mongodb-win32-x86_64-2.4.6 ok, 文件下载后,开始安装,这里要说一下,如果直接启动Mo ...
- 在Hadoop 2.3上运行C++程序各种疑难杂症(Hadoop Pipes选择、错误集锦、Hadoop2.3编译等)
首记 感觉Hadoop是一个坑,打着大数据最佳解决方案的旗帜到处坑害良民.记得以前看过一篇文章,说1TB以下的数据就不要用Hadoop了,体现不 出太大的优势,有时候反而会成为累赘.因此Hadoop的 ...
- CNN初探
CNN初探 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7450413.html 前言 这篇博客主要讲解卷积神经网络(CNN) ...
- Linux-(watch,at,crontab)
watch命令 1.命令格式: watch [参数] [命令] 2.命令功能: 可以将命令的输出结果输出到标准输出设备,多用于周期性执行命令/定时执行命令. watch可以帮你监测一个命令的运行结 ...
- WPF装饰器
装饰器定义: 装饰器是一种特殊类型的 FrameworkElement,用于向用户提供可视化提示. 对于其他用户,装饰器可用于将功能控点添加到元素中或提供有关控件的状态信息. 装饰器可以在不改变原有的 ...
- PTA (Advanced Level) 1008 Elevator
Elevator The highest building in our city has only one elevator. A request list is made up with Npos ...