题意

题目链接

\(n\)个点\(n\)条边的图,有多少种方法给边定向后没有环

Sol

一开始傻了,以为只有一个环。。。实际上N个点N条边还可能是基环树森林。。

做法挺显然的:找出所有的环,设第\(i\)个环的大小为\(w_i\)

\(ans = 2^{N - \sum w_i} \prod (2^{w_i} - 2)\)

最后减掉的2是形成环的情况

#include<bits/stdc++.h>
#define Pair pair<int, int>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
#define int long long
#define LL long long
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
//#define getchar() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1<<22, stdin), p1 == p2) ? EOF : *p1++)
//char buf[(1 << 22)], *p1 = buf, *p2 = buf;
using namespace std;
const int MAXN = 1e6 + 10, mod = 1e9 + 7, INF = 1e9 + 10;
const double eps = 1e-9, PI = acos(-1);
template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
template <typename A> inline void debug(A a){cout << a << '\n';}
template <typename A> inline LL sqr(A x){return 1ll * x * x;}
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = (x * 10 + c - '0') % mod, c = getchar();
return x * f;
}
int N, dep[MAXN], w[MAXN], top, po2[MAXN], vis[MAXN];
vector<int> v[MAXN];
void dfs(int x, int d) {
dep[x] = d; vis[x] = 1;
for(auto &to : v[x]) {
if(!vis[to])dfs(to, d + 1);
else if(vis[to] == 1) w[++top] = dep[x] - dep[to] + 1;
}
vis[x] = 2;
}
signed main() {
N = read();
po2[0] = 1;
for(int i = 1; i <= N; i++) po2[i] = mul(2, po2[i - 1]);
for(int i = 1; i <= N; i++) {
int x = read();
v[i].push_back(x);
}
for(int i = 1; i <= N; i++)
if(!dep[i])
dfs(i, 1);
int sum = 0, res = 1;
for(int i = 1; i <= top; i++) sum += w[i], res = mul(res, po2[w[i]] - 2 + mod);
printf("%d\n", mul(po2[N - sum], res)); return 0;
}

cf711D. Directed Roads(环)的更多相关文章

  1. Codeforces Round #369 (Div. 2) D. Directed Roads dfs求某个联通块的在环上的点的数量

    D. Directed Roads   ZS the Coder and Chris the Baboon has explored Udayland for quite some time. The ...

  2. Codeforces Round #369 (Div. 2) D. Directed Roads —— DFS找环 + 快速幂

    题目链接:http://codeforces.com/problemset/problem/711/D D. Directed Roads time limit per test 2 seconds ...

  3. Codeforces #369 div2 D.Directed Roads

    D. Directed Roads time limit per test2 seconds memory limit per test256 megabytes inputstandard inpu ...

  4. CodeForces #369 div2 D Directed Roads DFS

    题目链接:D Directed Roads 题意:给出n个点和n条边,n条边一定都是从1~n点出发的有向边.这个图被认为是有环的,现在问你有多少个边的set,满足对这个set里的所有边恰好反转一次(方 ...

  5. codeforces 711D D. Directed Roads(dfs)

    题目链接: D. Directed Roads time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  6. Code Forces 711D Directed Roads

    D. Directed Roads time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  7. Directed Roads

    Directed Roads 题目链接:http://codeforces.com/contest/711/problem/D dfs 刚开始的时候想歪了,以为同一个连通区域会有多个环,实际上每个点的 ...

  8. Codeforces Round #369 (Div. 2) D. Directed Roads (DFS)

    D. Directed Roads time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  9. Codeforces 711D Directed Roads - 组合数学

    ZS the Coder and Chris the Baboon has explored Udayland for quite some time. They realize that it co ...

随机推荐

  1. POJ 2538

    #include<string> //#include #include<stdio.h> #include<iostream> using namespace s ...

  2. odoo开发笔记:抛出警告的方式

    上边rase 加3种写法,都能实现,跑出警告的功能.

  3. Android返回系统Home桌面

    Intent intent = new Intent(); // 为Intent设置Action.Category属性 intent.setAction(Intent.ACTION_MAIN);// ...

  4. StreamSets学习系列之StreamSets支持多种安装方式【Core Tarball、Cloudera Parcel 、Full Tarball 、Full RPM 、Docker Image和Source Code 】(图文详解)

    不多说,直接上干货! Streamsets的官网 https://streamsets.com/ 得到 https://streamsets.com/opensource/ StreamSets支持多 ...

  5. Resolve类中错误体系的处理

    标红的表示要走3步骤,也就是: final List<MethodResolutionPhase> methodResolutionSteps = List.of( MethodResol ...

  6. [原创]Entity Framework查询原理

    前言 Entity Framework的全称是ADO.NET Entity Framework,是微软开发的基于ADO.NET的ORM(Object/Relational Mapping)框架.Ent ...

  7. springcloud~演化的微服务架构

    微服务 将整体功能按着模块划分成多个独立的单元,这些单元可以独立部署,它们之前通过轻量级的web api方式进行通讯,对于微服务框架来说,最流行的就是springcloud和Service Fabri ...

  8. 215. 数组中的第K个最大元素

    在未排序的数组中找到第 k 个最大的元素.请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素. 示例 1: 输入: [3,2,1,5,6,4] 和 k = 2输出: 5示 ...

  9. Vue笔记:在项目中使用 SCSS

    背景概述 1. CSS预处理器 css预处理器定义了一种新的编程语言,编译后成正常的CSS文件.为CSS增加一些编程的特性,无需考虑浏览器的兼容问题,让CSS更加简洁,适应性更强,可读性更佳,更易于代 ...

  10. linux(centos6.8 64位)下安装mysql5.7(yum方式)

    下载mysql源安装包 # wget http:.noarch.rpm 安装mysql源包 #yum localinstall mysql57.noarch.rpm 检查mysql源是否安装成功 # ...