题意

题目链接

\(n\)个点\(n\)条边的图,有多少种方法给边定向后没有环

Sol

一开始傻了,以为只有一个环。。。实际上N个点N条边还可能是基环树森林。。

做法挺显然的:找出所有的环,设第\(i\)个环的大小为\(w_i\)

\(ans = 2^{N - \sum w_i} \prod (2^{w_i} - 2)\)

最后减掉的2是形成环的情况

#include<bits/stdc++.h>
#define Pair pair<int, int>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
#define int long long
#define LL long long
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
//#define getchar() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1<<22, stdin), p1 == p2) ? EOF : *p1++)
//char buf[(1 << 22)], *p1 = buf, *p2 = buf;
using namespace std;
const int MAXN = 1e6 + 10, mod = 1e9 + 7, INF = 1e9 + 10;
const double eps = 1e-9, PI = acos(-1);
template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
template <typename A> inline void debug(A a){cout << a << '\n';}
template <typename A> inline LL sqr(A x){return 1ll * x * x;}
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = (x * 10 + c - '0') % mod, c = getchar();
return x * f;
}
int N, dep[MAXN], w[MAXN], top, po2[MAXN], vis[MAXN];
vector<int> v[MAXN];
void dfs(int x, int d) {
dep[x] = d; vis[x] = 1;
for(auto &to : v[x]) {
if(!vis[to])dfs(to, d + 1);
else if(vis[to] == 1) w[++top] = dep[x] - dep[to] + 1;
}
vis[x] = 2;
}
signed main() {
N = read();
po2[0] = 1;
for(int i = 1; i <= N; i++) po2[i] = mul(2, po2[i - 1]);
for(int i = 1; i <= N; i++) {
int x = read();
v[i].push_back(x);
}
for(int i = 1; i <= N; i++)
if(!dep[i])
dfs(i, 1);
int sum = 0, res = 1;
for(int i = 1; i <= top; i++) sum += w[i], res = mul(res, po2[w[i]] - 2 + mod);
printf("%d\n", mul(po2[N - sum], res)); return 0;
}

cf711D. Directed Roads(环)的更多相关文章

  1. Codeforces Round #369 (Div. 2) D. Directed Roads dfs求某个联通块的在环上的点的数量

    D. Directed Roads   ZS the Coder and Chris the Baboon has explored Udayland for quite some time. The ...

  2. Codeforces Round #369 (Div. 2) D. Directed Roads —— DFS找环 + 快速幂

    题目链接:http://codeforces.com/problemset/problem/711/D D. Directed Roads time limit per test 2 seconds ...

  3. Codeforces #369 div2 D.Directed Roads

    D. Directed Roads time limit per test2 seconds memory limit per test256 megabytes inputstandard inpu ...

  4. CodeForces #369 div2 D Directed Roads DFS

    题目链接:D Directed Roads 题意:给出n个点和n条边,n条边一定都是从1~n点出发的有向边.这个图被认为是有环的,现在问你有多少个边的set,满足对这个set里的所有边恰好反转一次(方 ...

  5. codeforces 711D D. Directed Roads(dfs)

    题目链接: D. Directed Roads time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  6. Code Forces 711D Directed Roads

    D. Directed Roads time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  7. Directed Roads

    Directed Roads 题目链接:http://codeforces.com/contest/711/problem/D dfs 刚开始的时候想歪了,以为同一个连通区域会有多个环,实际上每个点的 ...

  8. Codeforces Round #369 (Div. 2) D. Directed Roads (DFS)

    D. Directed Roads time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  9. Codeforces 711D Directed Roads - 组合数学

    ZS the Coder and Chris the Baboon has explored Udayland for quite some time. They realize that it co ...

随机推荐

  1. Vue+WebSocket+ES6+Canvas 制作「你画我猜」小游戏

    Vue+WebSocket+ES6+Canvas 制作「你画我猜」小游戏 转载 来源:jrainlau 链接:https://segmentfault.com/a/1190000005804860 项 ...

  2. python iter函数用法

    iter函数用法简述 Python 3中关于iter(object[, sentinel)]方法有两个参数. 使用iter(object)这种形式比较常见. iter(object, sentinel ...

  3. 【xsy2913】 enos 动态dp

    题目大意:给你一棵 $n$个点 以 $1$为根 的树,每个点有$ 0,1,2 $三种颜色之一,初始时整棵树的颜色均为 $0$. $m$ 次操作, 每次操作形如: 1 x y c : 将 $x$到$y$ ...

  4. (转)shlex — 解析 Shell 风格语法

    原文:https://pythoncaff.com/docs/pymotw/shlex-parse-shell-style-syntaxes/171 这是一篇协同翻译的文章,你可以点击『我来翻译』按钮 ...

  5. CentOS安装Nginx 以及日志管理

    环境:CentOS-6.4 Nginx版本:nginx-1.6.2.tar Linux连接工具:XShell VMWare虚拟机上准备两台CentOS: 两台机器做同样操作(后边做负载均衡.高可用的时 ...

  6. 深入理解Spring的异步机制

    一.Spring中实现异步执行 在这里我先以事件的机制举例,注意默认情况下事件的发布与监听都是同步执行的.那么我们来看一看基于异步事件的例子该怎么写 首先还是定义事件: package com.bdq ...

  7. Python -----issubclass和isinstance

    issubclass用于判断一个类是否为另一个类的子类,isinstance用于判断一个对象是否某类的一个实例 import math class Point: def __init__(self, ...

  8. wnmp(windows+nginx+mysql+php)环境搭建和配置

    要求 必备知识 熟悉基本编程环境搭建. 运行环境 windows 7(64位); nginx-1.4.7;MySQL Server 5.5php-5.4.39-nts 下载地址 环境下载 Nginx是 ...

  9. Python学习--14 序列化

    把变量从内存中变成可存储或传输的过程称之为序列化,在Python中叫pickling,在其他语言中也被称之为serialization,marshalling,flattening等等. pickle ...

  10. php的explode()和implode()方法

    php 中,字符串与数组互转       拆分字符串 到数组 explode()    - -(其他语言中的 split) 将数组连接成字符串 implode() <?php $test = ' ...