题意

题目链接

\(n\)个点\(n\)条边的图,有多少种方法给边定向后没有环

Sol

一开始傻了,以为只有一个环。。。实际上N个点N条边还可能是基环树森林。。

做法挺显然的:找出所有的环,设第\(i\)个环的大小为\(w_i\)

\(ans = 2^{N - \sum w_i} \prod (2^{w_i} - 2)\)

最后减掉的2是形成环的情况

#include<bits/stdc++.h>
#define Pair pair<int, int>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
#define int long long
#define LL long long
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
//#define getchar() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1<<22, stdin), p1 == p2) ? EOF : *p1++)
//char buf[(1 << 22)], *p1 = buf, *p2 = buf;
using namespace std;
const int MAXN = 1e6 + 10, mod = 1e9 + 7, INF = 1e9 + 10;
const double eps = 1e-9, PI = acos(-1);
template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
template <typename A> inline void debug(A a){cout << a << '\n';}
template <typename A> inline LL sqr(A x){return 1ll * x * x;}
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = (x * 10 + c - '0') % mod, c = getchar();
return x * f;
}
int N, dep[MAXN], w[MAXN], top, po2[MAXN], vis[MAXN];
vector<int> v[MAXN];
void dfs(int x, int d) {
dep[x] = d; vis[x] = 1;
for(auto &to : v[x]) {
if(!vis[to])dfs(to, d + 1);
else if(vis[to] == 1) w[++top] = dep[x] - dep[to] + 1;
}
vis[x] = 2;
}
signed main() {
N = read();
po2[0] = 1;
for(int i = 1; i <= N; i++) po2[i] = mul(2, po2[i - 1]);
for(int i = 1; i <= N; i++) {
int x = read();
v[i].push_back(x);
}
for(int i = 1; i <= N; i++)
if(!dep[i])
dfs(i, 1);
int sum = 0, res = 1;
for(int i = 1; i <= top; i++) sum += w[i], res = mul(res, po2[w[i]] - 2 + mod);
printf("%d\n", mul(po2[N - sum], res)); return 0;
}

cf711D. Directed Roads(环)的更多相关文章

  1. Codeforces Round #369 (Div. 2) D. Directed Roads dfs求某个联通块的在环上的点的数量

    D. Directed Roads   ZS the Coder and Chris the Baboon has explored Udayland for quite some time. The ...

  2. Codeforces Round #369 (Div. 2) D. Directed Roads —— DFS找环 + 快速幂

    题目链接:http://codeforces.com/problemset/problem/711/D D. Directed Roads time limit per test 2 seconds ...

  3. Codeforces #369 div2 D.Directed Roads

    D. Directed Roads time limit per test2 seconds memory limit per test256 megabytes inputstandard inpu ...

  4. CodeForces #369 div2 D Directed Roads DFS

    题目链接:D Directed Roads 题意:给出n个点和n条边,n条边一定都是从1~n点出发的有向边.这个图被认为是有环的,现在问你有多少个边的set,满足对这个set里的所有边恰好反转一次(方 ...

  5. codeforces 711D D. Directed Roads(dfs)

    题目链接: D. Directed Roads time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  6. Code Forces 711D Directed Roads

    D. Directed Roads time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  7. Directed Roads

    Directed Roads 题目链接:http://codeforces.com/contest/711/problem/D dfs 刚开始的时候想歪了,以为同一个连通区域会有多个环,实际上每个点的 ...

  8. Codeforces Round #369 (Div. 2) D. Directed Roads (DFS)

    D. Directed Roads time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  9. Codeforces 711D Directed Roads - 组合数学

    ZS the Coder and Chris the Baboon has explored Udayland for quite some time. They realize that it co ...

随机推荐

  1. D02-R语言基础学习

    R语言基础学习——D02 20190423内容纲要: 1.前言 2.向量操作 (1)常规操作 (2)不定长向量计算 (3)序列 (4)向量的删除与保留 3.列表详解 (1)列表的索引 (2)列表得元素 ...

  2. python3处理json数据

    获取actuator的值 [root@mongo_rs1 tmp]# cat test.py import requests import json url = 'http://wxtest.mayo ...

  3. ubuntu升级pip后, ImportError: cannot import name ‘main‘

    场景描述: 原先pip安装完成之后,一直没有更新版本,原pip版本为8.1.1,今天安装python 包pysftp的时候,提示需要升级pip到(pip 10.0.1); 于是乎,直接手到擒来,终端命 ...

  4. 发布上线前,先小秀一把俺的64位浏览器,速度那觉对是杠杠滴,上youtube,上google不费劲

    发布上线前,先小秀一把俺的64位浏览器,速度那觉对是杠杠滴,上youtube,上google不费劲

  5. Linux 服务器部署 PgAdmin 4 Server

    PostgreSQL 使用率越来越高,但是好用的图形化软件,诸如 Navicat.DataGrip.HeidiSQL 都是客户端软件,对于访问控制来说,比起 MySQL 的 phpMyAdmin 更加 ...

  6. Windows下调试hadoop

    1.   本地模式 本地模式下调试hadoop:下载winutils.exe和hadoop.dll hadoop.lib等windows的hadoop依赖文件放在D:\proc\hadoop\bin目 ...

  7. CodeSmith读取数据库

    这两天在看CodeSmith文档,因为官方文档在读数据库这一篇使用的是VB写的,对于C#使用者来说看起来很不方便,所以我改成C#的,顺便写下我自己的使用过程. 首先,要使用CodeSmith连接数据库 ...

  8. Android开发之漫漫长途 XV——RecyclerView

    该文章是一个系列文章,是本人在Android开发的漫漫长途上的一点感想和记录,我会尽量按照先易后难的顺序进行编写该系列.该系列引用了<Android开发艺术探索>以及<深入理解And ...

  9. Kafka中的zookeeper-shell.sh

    连接 zookeeper bin/zookeeper-shell. 常用命令 connect host:port get path [watch] ls path [watch] set path d ...

  10. DROP TABLE 恢复【一】

    当DROP TABLE指令敲下的时候,你很爽,你有考虑过后果么?如果该表真的没用,你DROP到无所谓,如果还有用的,这时你肯定吓惨了吧,如果你有备份,那么恭喜你,逃过一劫,如果没有备份呢?这时就该绝望 ...