python scipy stats学习笔记
from scipy.stats import chi2 # 卡方分布
from scipy.stats import norm # 正态分布
from scipy.stats import t # t分布
from scipy.stats import f # F分布
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import scipy.stats as stats
from scipy.stats import chi2_contingency # 列联表分析 # matplotlib画图注释中文需要设置
from matplotlib.font_manager import FontProperties
xy_font_set = FontProperties(fname=r"c:\windows\fonts\方正稚艺简体.ttf", size=12)
zhushi_font_set = FontProperties(fname=r"c:\windows\fonts\方正粗倩简体.ttf", size=12)
titleYW_font_set = FontProperties(fname=r"c:\windows\fonts\Gabriola.ttf", size=20)
titleZW_font_set = FontProperties(fname=r"c:\windows\fonts\汉仪细行楷简.ttf", size=18) # rvs: Random Variates
# pdf: Probability Density Function 概率密度函数
# cdf: Cumulative Distribution Function 概率密度函数的积分函数
# sf: Survival Function (1-CDF)
# ppf: Percent Point Function (Inverse of CDF) 百分点函数,概率密度函数的积分值
# isf: Inverse Survival Function (Inverse of SF)
# stats: Return mean, variance, (Fisher’s) skew, or (Fisher’s) kurtosis
# moment: non-central moments of the distribution # ppf以概率的形式,查询函数值-----------类似分布临界表 plt.figure()
# example ------------------------------------------- 卡方分布(右侧单边)
plt.subplot2grid((2, 2), (0, 0))
df = 20 # 自由度
# print(chi2.ppf(0.01, df)) # 计算函q=0.01概率时数值。其中 q = 1-a
# print(chi2.cdf(8.260, df)) # 知道x值求a
x = np.linspace(chi2.ppf(0.01, df), # 绘制概率密度图
chi2.ppf(0.99, df), 100)
plt.plot(x, chi2.pdf(x, df), alpha=0.6, label='chi2 pdf')
plt.title(u'自由度为20时的卡方概率密度函数图', fontproperties=titleZW_font_set, size=10)
# 计算平均数、方差、标准差
# print(chi2.mean(df))
# print(chi2.var(df))
# print(chi2.std(df)) # example ---------------------------------------------------- 标准正态分布(左侧单边)
plt.subplot2grid((2, 2), (0, 1))
# print(norm.ppf(0.6179)) # 知道q时求x, q=a
# print(norm.cdf(0.3)) # 知道x时求q
x = np.linspace(norm.ppf(0.01), norm.ppf(0.99), 100)
plt.plot(x, norm.pdf(x), alpha=0.6, label='norm pdf')
plt.title(u'标准正态分布概率密度函数图', fontproperties=titleZW_font_set, size=10) # example ----------------------------------------------------- t分布(双边分布)
plt.subplot2grid((2, 2), (1, 0))
df = 15
x = np.linspace(t.ppf(0.01, df), t.ppf(0.99, df), 100)
# print(t.ppf(0.95, df)) # q=0.95,a=(1-q)*2
# print(t.cdf(1.753, df))
plt.plot(x, t.pdf(x, df), alpha=0.6, label='t pdf')
plt.title(u'自由度为15时的t分布概率密度函数图', fontproperties=titleZW_font_set, size=10) # example ------------------------------------------------------ F分布(右侧单边分布)
plt.subplot2grid((2, 2), (1, 1))
df = 5
dn = 8
x = np.linspace(f.ppf(0.01, df, dn), f.ppf(0.99, df, dn), 100)
# print(f.ppf(0.95, df, dn))
plt.plot(x, f.pdf(x, df, dn), alpha=0.6, label='f pdf')
plt.title(u'自由度为5和8时的f分布概率密度函数图', fontproperties=titleZW_font_set, size=10) # example ------------------------------------------------------- 非标准正态分布
plt.figure()
std = 1
mean = 2
normalDistribution = stats.norm(mean, std) # 构建统计分布
x = np.linspace(normalDistribution.ppf(0.01), normalDistribution.ppf(0.99), 100)
plt.plot(x, normalDistribution.pdf(x))
# plt.show() # example -------------------------------------------------------- 对连续数据进行正态拟合
plt.figure()
train = pd.read_csv("csv/Titanic/train.csv")
train_Age = train.dropna(subset=['Age'])
M_S = stats.norm.fit(train_Age['Age']) # 正态拟合的平均值与标准差
train_Age['Age'].plot(kind='kde') # 原本的概率密度分布图 normalDistribution = stats.norm(M_S[0], M_S[1]) # 绘制拟合的正态分布图
x = np.linspace(normalDistribution.ppf(0.01), normalDistribution.ppf(0.99), 100)
plt.plot(x, normalDistribution.pdf(x), c='orange')
plt.xlabel('Age about Titanic')
plt.title('Titanic[Age] on NormalDistribution', size=20)
plt.legend(['Origin', 'NormDistribution']) # ----------------------------------------------------------------- R x C列联表,独立性检验
# 建立关于性别与存活
train_pclass_0 = train['Pclass'][train['Survived'] == 0].value_counts()
train_pclass_1 = train['Pclass'][train['Survived'] == 1].value_counts()
train_pclass_01 = pd.concat([train_pclass_0, train_pclass_1], axis=1, sort=True)
train_pclass_01.columns = ['Not_Survived', 'Survived']
g, p, dof, expctd = chi2_contingency(train_pclass_01.values) # g为chi2值,服从自由度为dof的卡方分布 print(g)
# 拟合优度检验,判断两个分类型变量是否独立
# 首先绘制卡方自由度为dof的曲线
plt.figure()
x = np.linspace(chi2.ppf(0.01, dof), chi2.ppf(0.99, dof), 100)
plt.plot(x, chi2.pdf(x, dof)) # 以95%置信区间,查看小概率事件区间
plt.axvline(chi2.ppf(0.975, dof), color='r')
plt.axvline(chi2.ppf(0.025, dof), color='r')
plt.title('chi2 distribution'+'whose dof is '+str(dof))
plt.text(chi2.ppf(0.975, dof), 0.02, 'q=0.95,z='+str(round(chi2.ppf(0.975, dof), 2)), ha='right', va='top', color='g', alpha=0.8, size=15)
plt.text(chi2.ppf(0.025, dof), 0.02, 'q=0.05,z='+str(round(chi2.ppf(0.025, dof), 2)), ha='left', va='top', color='g', alpha=0.8, size=15) plt.show()
python scipy stats学习笔记的更多相关文章
- Requests:Python HTTP Module学习笔记(一)(转)
Requests:Python HTTP Module学习笔记(一) 在学习用python写爬虫的时候用到了Requests这个Http网络库,这个库简单好用并且功能强大,完全可以代替python的标 ...
- python网络爬虫学习笔记
python网络爬虫学习笔记 By 钟桓 9月 4 2014 更新日期:9月 4 2014 文章文件夹 1. 介绍: 2. 从简单语句中開始: 3. 传送数据给server 4. HTTP头-描写叙述 ...
- Python Built-in Function 学习笔记
Python Built-in Function 学习笔记 1. 匿名函数 1.1 什么是匿名函数 python允许使用lambda来创建一个匿名函数,匿名是因为他不需要以标准的方式来声明,比如def ...
- python数据分析入门学习笔记
学习利用python进行数据分析的笔记&下星期二内部交流会要讲的内容,一并分享给大家.博主粗心大意,有什么不对的地方欢迎指正~还有许多尚待完善的地方,待我一边学习一边完善~ 前言:各种和数据分 ...
- python数据分析入门学习笔记儿
学习利用python进行数据分析的笔记儿&下星期二内部交流会要讲的内容,一并分享给大家.博主粗心大意,有什么不对的地方欢迎指正~还有许多尚待完善的地方,待我一边学习一边完善~ 前言:各种和数据 ...
- Python快速入门学习笔记(二)
注:本学习笔记参考了廖雪峰老师的Python学习教程,教程地址为:http://www.liaoxuefeng.com/wiki/001374738125095c955c1e6d8bb49318210 ...
- python网络爬虫学习笔记(二)BeautifulSoup库
Beautiful Soup库也称为beautiful4库.bs4库,它可用于解析HTML/XML,并将所有文件.字符串转换为'utf-8'编码.HTML/XML文档是与“标签树一一对应的.具体地说, ...
- Python之xml学习笔记
XML处理模块 xml是实现不同语言或程序之间进行数据交换的协议,跟json差不多,但json使用起来更简单,至今很多传统公司如金融行业的很多系统的接口还主要是xml. xml的格式如下,就是通过&l ...
- python网络爬虫学习笔记(一)Request库
一.Requests库的基本说明 引入Rquests库的代码如下 import requests 库中支持REQUEST, GET, HEAD, POST, PUT, PATCH, DELETE共7个 ...
随机推荐
- initialProps被React-Navigation的navigation属性覆盖解决方案
怎么开场对我来说一个是个很纠结的问题,Emmm这应该算个好开场. 最近在做一个RN的app端调试工具,在把它嵌入原生app中的时候遇到了一个问题,RN组件里面接受不到原生传过来的initialProp ...
- vue-cli静态资源处理
vue-cli是利用webpack进行打包部署,其中静态资源的路径问题是一个比较麻烦的部分. 项目中共有两个存放静态文件的地方. /static 根目录下的static文件夹 assets src目录 ...
- dbca时报错:ORA-12705(NLS_LANG=AMERICAN_AMERICA.UTF8);
#add by zexport ORACLE_BASE=/u01/oracle export ORACLE_HOME=/u01/oracle/11.02 export ORACLE_SID=z exp ...
- log下一次坑爹的疏忽
今天调试一段十几行的代码,也让我是一顿咒骂...就说说是怎么回事哈哈. 是这样的,这个页面foreach了一个个的div块,每个div里有个a标签,这个按钮绑定了个点击事件.事件走了个ajax,根据返 ...
- WPF中ListBox /ListView如何改变选中条背景颜色
适用ListBox /ListView WPF中LISTVIEW如何改变选中条背景颜色 https://www.cnblogs.com/sjqq/p/7828119.html
- test temp
http://img3.cache.netease.com/love/cssjs/20026/script/page/common.jshttp://img3.cache.netease.com/lo ...
- redis系列--你真的入门了吗?redis4.0入门~
前言 redis作为nosql家族中非常热门的一员,也是被大型互联网公司所青睐,无论你是开发.测试或者运维,学习掌握它总会为你的职业生涯增色添彩. 当然,你或多或少已经了解redis,但是你是否了解其 ...
- 20155232《网络对抗》Exp5 MSF基础应用
20155232<网络对抗>Exp5 MSF基础应用 基础问题回答 用自己的话解释什么是exploit,payload,encode. exploit:就是利用可能存在的漏洞对目标进行攻击 ...
- 《Flask Web开发实战:入门、进阶与原理解析(李辉著 )》PDF+源代码
一句话评价: 这可能是市面上(包括国外出版的)你能找到最好的讲Flask的书了 下载:链接: https://pan.baidu.com/s/1ioEfLc7Hc15jFpC-DmEYBA 提取码: ...
- js中的数据类型及判断方法
ECMAScirpt 变量有两种不同的数据类型:基本类型,引用类型. 基本类型 ● Boolean ● Null ● Undefined ● Number ● String ● Symbol (ECM ...