传送门

解题思路

扩展 $crt​$,就是中国剩余定理在模数不互质的情况下,首先对于方程

​     $\begin{cases} x\equiv a_1\mod m_1\\x\equiv a_2\mod m_2\end{cases}$

来说,可以将其写为:

$\begin{cases} x=k_1*m_1+a_1\\x=k_2*m_2+a_2\end{cases}$

然后联立方程:

​     $k_1*m_1+a_1=k_2*m_2+a_2$

$\Leftrightarrow -k_1*m_1+k_2*m_2=a_1-a_2$

a这样的话形式就很像$exgcd$ 了,可以$exgcd$求出$k_1'*m_1+k_2'*m_2=gcd(m_1,m_2)$的$k_1'$了,然后若$(a_1-a_2)\%gcd(m_1,m_2)\neq 0$,则无解。然后让方程两边同时乘$(a_1-a_2)/gcd(m_1,m_2)$,就可以求出$k_1$了,最后再带入原式可以求出$x$的值,这个$x$记为$x_0$ ,即为满足上面两个方程的一个解,然后将这两个方程

合并成一个方程:$x\equiv x_0\mod lcm(m_1,m_2)$,之后就可以一直合并就行了。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib> using namespace std;
const int MAXN = ;
typedef long long LL;
//typedef __int128 LL; inline LL rd(){
LL x=,f=;char ch=getchar();
while(!isdigit(ch)) {f=ch=='-'?:;ch=getchar();}
while(isdigit(ch)) {x=(x<<)+(x<<)+ch-'';ch=getchar();}
return f?x:-x;
} int n;
LL a[MAXN],b[MAXN],M,R; LL slow_mul(LL x,LL y,LL mod){
LL ret=;
for(;y;y>>=){
if(y&) ret=(ret+x)%mod;
x=(x+x)%mod;
}
return ret;
} LL exgcd(LL a,LL b,LL &x,LL &y){
if(!b) {x=;y=;return a;}
LL now=exgcd(b,a%b,x,y);
LL t=x;x=y;y=t-(a/b)*y;
return now;
} int main(){
scanf("%d",&n);
for(int i=;i<=n;i++) a[i]=rd(),b[i]=rd();
M=a[];R=b[];LL x,y,d,now;
for(int i=;i<=n;i++){
d=exgcd(M,a[i],x,y);
// if((R-r[i])%d!=0) puts("-1");
now=((R-b[i])%a[i]+a[i])%a[i];
x=slow_mul(x,now/d,a[i]);R-=M*x;
M=M*(a[i]/d);R=(R%M+M)%M;
}
printf("%lld",(R%M+M)%M);
return ;
}

LUOGU P4777 【模板】扩展中国剩余定理(EXCRT)的更多相关文章

  1. 中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结

    中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结 标签:数学方法--数论 阅读体验:https://zybuluo.com/Junlier/note/1300035 前置浅讲 前 ...

  2. 扩展中国剩余定理 (exCRT) 的证明与练习

    原文链接https://www.cnblogs.com/zhouzhendong/p/exCRT.html 扩展中国剩余定理 (exCRT) 的证明与练习 问题模型 给定同余方程组 $$\begin{ ...

  3. 扩展中国剩余定理 (ExCRT)

    扩展中国剩余定理 (ExCRT) 学习笔记 预姿势: 扩展中国剩余定理和中国剩余定理半毛钱关系都没有 问题: 求解线性同余方程组: \[ f(n)=\begin{cases} x\equiv a_1\ ...

  4. 扩展中国剩余定理(EXCRT)快速入门

    问题 传送门 看到这个问题感觉很难??? 不用怕,往下看就好啦 假如你不会CRT也没关系 EXCRT大致思路 先考虑将方程组两两联立解开,如先解第一个与第二个,再用第一个与第二个的通解来解第三个... ...

  5. 扩展中国剩余定理 exCRT 学习笔记

    前言 由于 \(\{\mathrm{CRT}\}\subseteq\{\mathrm{exCRT}\}\),而且 CRT 又太抽象了,所以直接学 exCRT 了. 摘自 huyufeifei 博客 这 ...

  6. [Luogu P4777] 【模板】扩展中国剩余定理(EXCRT) (扩展中国剩余定理)

    题面 传送门:洛咕 Solution 真*扩展中国剩余定理模板题.我怎么老是在做模板题啊 但是这题与之前不同的是不得不写龟速乘了. 还有两个重点 我们在求LCM的时候,记得先/gcd再去乘另外那个数, ...

  7. P4777 【模板】扩展中国剩余定理(EXCRT)/ poj2891 Strange Way to Express Integers

    P4777 [模板]扩展中国剩余定理(EXCRT) excrt模板 我们知道,crt无法处理模数不两两互质的情况 然鹅excrt可以 设当前解到第 i 个方程 设$M=\prod_{j=1}^{i-1 ...

  8. P4777 【模板】扩展中国剩余定理(EXCRT)&& EXCRT

    EXCRT 不保证模数互质 \[\begin{cases} x \equiv b_1\ ({\rm mod}\ a_1) \\ x\equiv b_2\ ({\rm mod}\ a_2) \\ ... ...

  9. P4777 【模板】扩展中国剩余定理(EXCRT)

    思路 中国剩余定理解决的是这样的问题 求x满足 \[ \begin{matrix}x \equiv a_1(mod\ m_1)\\x\equiv a_2(mod\ m_2)\\ \dots\\x\eq ...

  10. 扩展中国剩余定理(EXCRT)学习笔记

    扩展中国剩余定理(EXCRT)学习笔记 用途 求解同余方程组 \(\begin{cases}x\equiv c_{1}\left( mod\ m_{1}\right) \\ x\equiv c_{2} ...

随机推荐

  1. 新手git遇到的问题

    1. 如何撤销git add,不小心执行了git add . 操作,但是又不能提交所有的文件,因为对应不同的分支,现在怎么样可以将git add 撤销回来? 解决:git reset HEAD(暂时尝 ...

  2. 2-MySQL高级-事务-基本概念(1)

    事务 1. 为什么要有事务 事务广泛的运用于订单系统.银行系统等多种场景 例如: A用户和B用户是银行的储户,现在A要给B转账500元,那么需要做以下几件事: 检查A的账户余额>500元: A ...

  3. Linux ls 命令实现(简化版)

    在学习linux系统编程的时候,实现了ls命令的简化版本号. 实现的功能例如以下: 1. 每种文件类型有自己的颜色 (- 普通文件, d 文件夹文件, l 链接文件. c 字符设备文件. b 快设备文 ...

  4. STM32 Keil仿真调试

    引用:http://blog.sina.com.cn/s/blog_3c63d2bd0102vt9a.html 问题描述:使用MDK进行软件设计时没有使用ST官方的模板而是手动建立的工程,使用ST官方 ...

  5. OC中Nil nil NULL 和 [NSNULL null]的区别

    关于这个问题看过两三次了,但是每次过两个月脑袋里又会不清晰,索性记录一下加深一下印象. 一.nil 当一个对象置为nil时,这个对象的内存地址就会被系统收回.置空之后是不能进行retain,copy等 ...

  6. JS对象 Date 日期对象 日期对象可以储存任意一个日期,并且可以精确到毫秒数(1/1000 秒)。 定义一个时间对象 : var Udate=new Date();Date()的首字母须大写

    Date 日期对象 日期对象可以储存任意一个日期,并且可以精确到毫秒数(1/1000 秒). 定义一个时间对象 : var Udate=new Date(); 注意:使用关键字new,Date()的首 ...

  7. jq给页面添加覆盖层遮罩的实例

    先引入jq代码,然后代码如下: $(function(){ var docHeight = $(document).height(); //获取窗口高度 $('body').append('<d ...

  8. Unknown/unsupported SVM type in function 'cv::ml::SVMImpl::checkParams'

    1.在使用PYTHON[Python 3.6.8]训练样本时报错如下: Traceback (most recent call last): File "I:\Eclipse\Python\ ...

  9. C++——运算符重载

    运算符重载编程基础 例如: //全局函数 完成 +操作符 重载  Complex operator+(Complex &c1, Complex &c2) //类成员函数 完成 -操作符 ...

  10. eax,ebx,ecx,edx,esi,edi,ebp,esp寄存器的作用

    位的寄存器.如果用C语言来解释,可以把这些寄存器当作变量看待. 比方说:add eax,-2 ;   //可以认为是给变量eax加上-2这样的一个值. 位寄存器有多种用途,但每一个都有"专长 ...