题意:

平面上有几个宽度相同的矩形区域被涂黑了,让你找到一条横线横截若干个矩形,把这些黑色部分抠下来一部分使得它们以这条横线为对称轴,求能抠下来的最大面积。

题解:

在随着对称轴上移的过程中,必然有一部分矩形有效面积在增加,一部分有效面积在减少,一部分有效面积不变。

单个矩形状态发生变化时,仅当对称轴触及下端点,中点,上端点时。

因此预处理出所有矩形的这三个突变点的信息并离散化,然后从下往上遍历,记录每一个时间点这三种状态的矩形共有多少个,以此递推面积。

最优解一定在突变点处出现,记录即可。

为避免浮点运算,将高度乘以二后存入。

#include<iostream>
#include<algorithm>
#define LL long long
using namespace std;
struct Node{
int stat;
LL height;
friend bool operator <(const Node &a,const Node &b){
return a.height<b.height;
}
Node(){}
Node(int x,LL y){
stat=x;height=y;
}
}node[];
int main(){
int n;
scanf("%d",&n);
int cnt=;
node[]=Node(,);
for(int i=;i<=n;i++){
LL l,r;
scanf("%lld %lld",&l,&r);
node[++cnt]=Node(-,l*);
node[++cnt]=Node(,l+r);
node[++cnt]=Node(,r*);
}
sort(node+,node++cnt);
int up=,down=;
LL now=,maxx=;
for(int i=;i<=cnt;i++){
now+=(node[i].height-node[i-].height)*(up-down);
maxx=max(now,maxx);
if(node[i].stat==-)up++;
if(node[i].stat==)up--,down++;
if(node[i].stat==)down--;
}
printf("%lld\n",maxx);
return ;
}

牛客多校第九场 J Symmetrical Painting 计算几何/扫描线的更多相关文章

  1. 2019牛客多校第⑨场J Symmetrical Painting(思维,离散化)

    原题:https://ac.nowcoder.com/acm/contest/889/J 题意: 二维平面上有n个矩形,每个矩形左下角是(i−1,Li)(i−1,Li), 右上角是(i,Ri)(i,R ...

  2. 牛客多校训练营第九场 J - Symmetrical Painting (排序)

    J - Symmetrical Painting 题意 给你\(n\)个矩形, 左下角\((i-1,\ L_i)\), 右上角\((i,\ R_i)\), 找一条线\(l\)平行于\(x\)轴, 让这 ...

  3. 牛客多校第九场 && ZOJ3774 The power of Fibonacci(二次剩余定理+斐波那契数列通项/循环节)题解

    题意1.1: 求\(\sum_{i=1}^n Fib^m\mod 1e9+9\),\(n\in[1, 1e9], m\in[1, 1e4]\) 思路1.1 我们首先需要知道斐波那契数列的通项是:\(F ...

  4. Cutting Bamboos(2019年牛客多校第九场H题+二分+主席树)

    题目链接 传送门 题意 有\(n\)棵竹子,然后有\(q\)次操作,每次操作给你\(l,r,x,y\),表示对\([l,r]\)区间的竹子砍\(y\)次,每次砍伐的长度和相等(自己定砍伐的高度\(le ...

  5. 2018牛客多校第九场E(动态规划,思维,取模)

    #include<bits/stdc++.h>using namespace std;const long long mod=1000000007,inv=570000004;long l ...

  6. 2019牛客多校第九场AThe power of Fibonacci——扩展BM

    题意 求斐波那契数列m次方的前n项和,模数为 $1e9$. 分析 线性递推乘线性递推仍是线性递推,所以上BM. 由于模数非质数,上扩展版的BM. 递推多少项呢?本地输入发现最大为与前57项有关(而且好 ...

  7. 牛客多校第九场 A The power of Fibonacci 杜教bm解线性递推

    题意:计算斐波那契数列前n项和的m次方模1e9 题解: $F[i] – F[i-1] – F[i-2] = 0$ $F[i]^2 – 2 F[i-1]^2 – 2 F[i-2]^2 + F[i-3] ...

  8. 牛客多校第九场 D Knapsack Cryptosystem 背包

    题意: 给你32个物品,给定一个容积,让你恰好把这个背包装满,求出装满的方案 题解: 暴力计算的话,复杂度$2^{32}$肯定会炸,考虑一种类似bsgs的算法,先用$2^{16}$的时间遍历前一半物品 ...

  9. 牛客多校第九场 E All men are brothers 并查集/组合论

    题意: 一开始有n人互不认识,每回合有两个人认识,认识具有传递性,也就是相互认识的人组成小团体.现在问你每个回合,挑选四个人,这四个人互不认识,有多少种挑选方法. 题解: 认识不认识用并查集维护即可, ...

随机推荐

  1. 关于SQL中 =:的含义

    一个很恶臭的例子来说明 =: 在sql语句中是做什么用的 int number= 114514: //众所周知野兽先辈的咆哮(世界级美声)是一串数字 var strSql = "select ...

  2. 神建模+dp——cf1236E

    首先将两个人的所有可能的操作建立成一个模型:m+2行n列的矩阵 序列A对应图上的格子(i,Ai),第0行作为起点,最后一行作为终点,每个点可以向左下,下,右下走,每种可行的情况对应图上的一条路径 推出 ...

  3. [ZJOI2011]看电影(组合数学/打表+高精)

    Description 到了难得的假期,小白班上组织大家去看电影.但由于假期里看电影的人太多,很难做到让全班看上同一场电影,最后大家在一个偏僻的小胡同里找到了一家电影院.但这家电影院分配座位的方式很特 ...

  4. Peer模式的多线程程序例子

    Peer模式的多线程程序例子 程序的模型大概是这样的.有一个master(),用来分发任务.有N个多线程的slave用来处理任务. 主程序里可以这样调用: 可以看出,上面这段程序还是依赖于Proces ...

  5. layui多图上传

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  6. 前端(二十二)—— vue组件:局部组件、全局组件、父组件数据传到子组件、子组件数据传到父组件、父子组件实现todoList

    Vue组件 一.组件介绍 每一个组件都是一个vue实例 每个组件均具有自身的模板template,根组件的模板就是挂载点,根组件也可以显式书写模板,会替换掉挂载点 每个组件模板只能拥有一个根标签 子组 ...

  7. form表单和CSS基础

    form 表单 input type="" 表单的组合标签,用来确定需要的是什么输入类型 type属性值: 文本输入框:text 密码输入框:password 单选按钮:radio ...

  8. python生成阿里云云直播推流播流地址

    申请一个阿里云账号,进入控制台,添加云直播工能,就可以获得相关数据, 直接上代码,阿里云接口文档https://cloud.tencent.com/document/product/267/7977 ...

  9. 结对编程UI

    GitHub:https://github.com/zsl1996/UI/commits/master 一.            实验内容 这是交付给最终用户的软件,有一定的界面和必要的辅助功能.完 ...

  10. 从零开始搭建系统1.2——Nginx安装及配置

    一.安装准备 首先由于nginx的一些模块依赖一些lib库,所以在安装nginx之前,必须先安装这些lib库,这些依赖库主要有g++.gcc.openssl-devel.pcre-devel和zlib ...