Codeforces 442B. Andrey and Problem
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output
Andrey needs one more problem to conduct a programming contest. He has n friends who are always willing to help. He can ask some of them to come up with a contest problem. Andrey knows one value for each of his fiends — the probability that this friend will come up with a problem if Andrey asks him.
Help Andrey choose people to ask. As he needs only one problem, Andrey is going to be really upset if no one comes up with a problem or if he gets more than one problem from his friends. You need to choose such a set of people that maximizes the chances of Andrey not getting upset.
Input
The first line contains a single integer n (1 ≤ n ≤ 100) — the number of Andrey's friends. The second line contains n real numbers pi (0.0 ≤ pi ≤ 1.0) — the probability that the i-th friend can come up with a problem. The probabilities are given with at most 6 digits after decimal point.
Output
Print a single real number — the probability that Andrey won't get upset at the optimal choice of friends. The answer will be considered valid if it differs from the correct one by at most 10 - 9.
Examples
Input
4
0.1 0.2 0.3 0.8
Output
0.800000000000
Input
2
0.1 0.2
Output
0.260000000000
Note
In the first sample the best strategy for Andrey is to ask only one of his friends, the most reliable one.
In the second sample the best strategy for Andrey is to ask all of his friends to come up with a problem. Then the probability that he will get exactly one problem is 0.1·0.8 + 0.9·0.2 = 0.26.
题目大意
有\(n\)个人,你可以挑出一部分人来向他们要一道题,第\(i\)个人给你题的概率为\(p_i\),你只需要一道题,多了或少了你都不高兴。问在所有的选人方案里,有且仅有一道题的最大概率是多少?
题解
官方题解很明白不是很清楚你们为什么看不懂
先考虑选出的集合$A = { p_1, p_2, p_3, \ldots , p_n } $
概率\(Ans\)为
\]
\]
\]
考虑向集合内添加一个新的元素\(p_x\),对答案的贡献为:
\]
看上去非常乱
记\(P = \prod_{j=1}^{n}(1-p_j),S=\sum_{i=1}^{n}\frac{p_i}{1-p_i}\)
上述式子改写成
\]
\]
\]
发现:
引理1:唯有当\(S < 1\)时,\(x\)才会加入集合
那么对于所有满足\(S < 1\)的元素,我们加哪个更好呢?
考虑两个元素\(i,j,i\neq j\),他们的贡献差为:
\]
\]
\]
由此得到:
引理2:当元素\(i\)比\(j\)更优时,当且仅当\(\Delta ^{'}> 0\),即\(p_i > p_j\)
算法不难得出:按照\(p_i\)排序,不断往里加,一直加到\((1-S) \leq 0\)为止,即为答案
接下来通过上述结论来证明算法正确的充分性,即算法的是正确答案。
考虑反证法,假设最有答案集合为\(A\),存在元素\(i,j\),满足\(i \in A,j \notin B,p_i < p_j\),那我们把\(i\)从集合\(A\)中去掉,此时一定满足\((1-S) > 0\)(不然最优答案为啥要把\(i\)加进去呢)。根据引理1我们可以把\(j\)加进去,根引理2,加入\(j\)比加入\(i\)更优,与\(A\)为最优矛盾。所以\(j\)应该加入答案。
归纳一下算法就是对的了(唔)
此外还要加个特判
因为\(p_i = 1\)的时候S就挂了。。
所以如果出现\(1\),答案就是1,直接输出
其实我相当于把官方题解翻译了一遍,加了点自己的东西觉得更好理解
上述证明写法非常不严谨,大家自行脑补严谨的写法
只是做了点微小的工作,谢谢大家
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <map>
#include <cmath>
inline int max(int a, int b){return a > b ? a : b;}
inline int min(int a, int b){return a < b ? a : b;}
inline void swap(int &x, int &y){int tmp = x;x = y;y = tmp;}
inline void read(int &x)
{
x = 0;char ch = getchar(), c = ch;
while(ch < '0' || ch > '9') c = ch, ch = getchar();
while(ch <= '9' && ch >= '0') x = x * 10 + ch - '0', ch = getchar();
if(c == '-') x = -x;
}
const int INF = 0x3f3f3f3f;
double a[10000 + 10], S, P;
int n;
bool cmp(double a, double b)
{
return a > b;
}
int main()
{
read(n);
for(int i = 1;i <= n;++ i)
scanf("%lf", &a[i]);
std::sort(a + 1, a + 1 + n, cmp);
if(a[1] == 1)
{
printf("1");
return 0;
}
P = 1, S = 0;
for(int i = 1;i <= n;++ i)
{
if(S < 1)
{
P *= 1 - a[i];
S += a[i] / (1 - a[i]);
}
}
printf("%.10lf", P * S);
return 0;
}
Codeforces 442B. Andrey and Problem的更多相关文章
- Codeforces 442B Andrey and Problem(贪婪)
题目链接:Codeforces 442B Andrey and Problem 题目大意:Andrey有一个问题,想要朋友们为自己出一道题,如今他有n个朋友.每一个朋友想出题目的概率为pi,可是他能够 ...
- codeforces 442B B. Andrey and Problem(贪心)
题目链接: B. Andrey and Problem time limit per test 2 seconds memory limit per test 256 megabytes input ...
- codeforces#253 D - Andrey and Problem里的数学知识
这道题是这种,给主人公一堆事件的成功概率,他仅仅想恰好成功一件. 于是,问题来了,他要选择哪些事件去做,才干使他的想法实现的概率最大. 我的第一个想法是枚举,枚举的话我想到用dfs,但是认为太麻烦. ...
- Codeforces Round #253 (Div. 1) B. Andrey and Problem
B. Andrey and Problem time limit per test 2 seconds memory limit per test 256 megabytes input standa ...
- Codeforces 442B
题目链接 B. Andrey and Problem time limit per test 2 seconds memory limit per test 256 megabytes input s ...
- [codeforces 528]B. Clique Problem
[codeforces 528]B. Clique Problem 试题描述 The clique problem is one of the most well-known NP-complete ...
- cf442B Andrey and Problem
B. Andrey and Problem time limit per test 2 seconds memory limit per test 256 megabytes input standa ...
- codeforces.com/contest/325/problem/B
http://codeforces.com/contest/325/problem/B B. Stadium and Games time limit per test 1 second memory ...
- CodeForces 867B Save the problem
B. Save the problem! http://codeforces.com/contest/867/problem/B time limit per test 2 seconds memor ...
随机推荐
- apache 80 端口 反向代理 tomcat 8080端口
最近有个jsp的项目要放到服务上,但服务器上已经有了XAMPP(apache + mysql + php), 已占用了80端口.但http默认是访问80端口的. 先把tomcat 环境搭建起来, 发现 ...
- 关于TMDS
https://en.wikipedia.org/wiki/Transition-minimized_differential_signaling TMDS,Transition Minimized ...
- retired!
退役啦!估计不会再更新了,终于在大四拿到了icpc,ccpc,省赛,邀请赛金,也算是圆满了!
- JSF(JavaServer Faces)简介
JavaServer Faces (JSF) 是一种用于构建Java Web 应用程序的标准框架(是Java Community Process 规定的JSR-127标准).它提供了一种以组件为中心的 ...
- 左神算法基础班5_1设计RandomPool结构
Problem: 设计RandomPool结构 [题目] 设计一种结构,在该结构中有如下三个功能: insert(key):将某个key加入到该结构,做到不重复加入. delete(key):将原本在 ...
- 豌豆荚Redis集群方案:Codis
Codis简介 Codis是一个分布式Redis解决方案,对于上层的应用来说,连接到CodisProxy和连接原生的RedisServer没有明显的区别(不支持的命令列表),上层应用可以像使用单机的R ...
- vue使用axios实现前后端通信
安装依赖 npm install --save axios # vue-axios是对axios的简单封装 npm install --save vue-axios 用例 在main.js里面进行全局 ...
- P1919 【模板】A*B Problem升级版 /// FFT模板
题目大意: 给定l,输入两个位数为l的数A B 输出两者的乘积 FFT讲解 这个讲解蛮好的 就是讲解里面贴的模板是错误的 struct cpx { double x,y; cpx(double _x= ...
- 简单的UDP服务端和客户端示例
UDP的理论不再多说,我这里直接给出一个关于UDP的HelloWorld程序,代码明了,希望对刚入门的学生有所帮助! 当然,实际上,在这块我也刚入门! 首先写服务端代码,服务端邦定本地的IP和端口来监 ...
- netty DelimiterBasedFrameDecoder
netty server EchoServer package com.zhaowb.netty.ch5_1; import io.netty.bootstrap.ServerBootstrap; i ...