Codeforces 442B. Andrey and Problem
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output
Andrey needs one more problem to conduct a programming contest. He has n friends who are always willing to help. He can ask some of them to come up with a contest problem. Andrey knows one value for each of his fiends — the probability that this friend will come up with a problem if Andrey asks him.
Help Andrey choose people to ask. As he needs only one problem, Andrey is going to be really upset if no one comes up with a problem or if he gets more than one problem from his friends. You need to choose such a set of people that maximizes the chances of Andrey not getting upset.
Input
The first line contains a single integer n (1 ≤ n ≤ 100) — the number of Andrey's friends. The second line contains n real numbers pi (0.0 ≤ pi ≤ 1.0) — the probability that the i-th friend can come up with a problem. The probabilities are given with at most 6 digits after decimal point.
Output
Print a single real number — the probability that Andrey won't get upset at the optimal choice of friends. The answer will be considered valid if it differs from the correct one by at most 10 - 9.
Examples
Input
4
0.1 0.2 0.3 0.8
Output
0.800000000000
Input
2
0.1 0.2
Output
0.260000000000
Note
In the first sample the best strategy for Andrey is to ask only one of his friends, the most reliable one.
In the second sample the best strategy for Andrey is to ask all of his friends to come up with a problem. Then the probability that he will get exactly one problem is 0.1·0.8 + 0.9·0.2 = 0.26.
题目大意
有\(n\)个人,你可以挑出一部分人来向他们要一道题,第\(i\)个人给你题的概率为\(p_i\),你只需要一道题,多了或少了你都不高兴。问在所有的选人方案里,有且仅有一道题的最大概率是多少?
题解
官方题解很明白不是很清楚你们为什么看不懂
先考虑选出的集合$A = { p_1, p_2, p_3, \ldots , p_n } $
概率\(Ans\)为
\]
\]
\]
考虑向集合内添加一个新的元素\(p_x\),对答案的贡献为:
\]
看上去非常乱
记\(P = \prod_{j=1}^{n}(1-p_j),S=\sum_{i=1}^{n}\frac{p_i}{1-p_i}\)
上述式子改写成
\]
\]
\]
发现:
引理1:唯有当\(S < 1\)时,\(x\)才会加入集合
那么对于所有满足\(S < 1\)的元素,我们加哪个更好呢?
考虑两个元素\(i,j,i\neq j\),他们的贡献差为:
\]
\]
\]
由此得到:
引理2:当元素\(i\)比\(j\)更优时,当且仅当\(\Delta ^{'}> 0\),即\(p_i > p_j\)
算法不难得出:按照\(p_i\)排序,不断往里加,一直加到\((1-S) \leq 0\)为止,即为答案
接下来通过上述结论来证明算法正确的充分性,即算法的是正确答案。
考虑反证法,假设最有答案集合为\(A\),存在元素\(i,j\),满足\(i \in A,j \notin B,p_i < p_j\),那我们把\(i\)从集合\(A\)中去掉,此时一定满足\((1-S) > 0\)(不然最优答案为啥要把\(i\)加进去呢)。根据引理1我们可以把\(j\)加进去,根引理2,加入\(j\)比加入\(i\)更优,与\(A\)为最优矛盾。所以\(j\)应该加入答案。
归纳一下算法就是对的了(唔)
此外还要加个特判
因为\(p_i = 1\)的时候S就挂了。。
所以如果出现\(1\),答案就是1,直接输出
其实我相当于把官方题解翻译了一遍,加了点自己的东西觉得更好理解
上述证明写法非常不严谨,大家自行脑补严谨的写法
只是做了点微小的工作,谢谢大家
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <map>
#include <cmath>
inline int max(int a, int b){return a > b ? a : b;}
inline int min(int a, int b){return a < b ? a : b;}
inline void swap(int &x, int &y){int tmp = x;x = y;y = tmp;}
inline void read(int &x)
{
x = 0;char ch = getchar(), c = ch;
while(ch < '0' || ch > '9') c = ch, ch = getchar();
while(ch <= '9' && ch >= '0') x = x * 10 + ch - '0', ch = getchar();
if(c == '-') x = -x;
}
const int INF = 0x3f3f3f3f;
double a[10000 + 10], S, P;
int n;
bool cmp(double a, double b)
{
return a > b;
}
int main()
{
read(n);
for(int i = 1;i <= n;++ i)
scanf("%lf", &a[i]);
std::sort(a + 1, a + 1 + n, cmp);
if(a[1] == 1)
{
printf("1");
return 0;
}
P = 1, S = 0;
for(int i = 1;i <= n;++ i)
{
if(S < 1)
{
P *= 1 - a[i];
S += a[i] / (1 - a[i]);
}
}
printf("%.10lf", P * S);
return 0;
}
Codeforces 442B. Andrey and Problem的更多相关文章
- Codeforces 442B Andrey and Problem(贪婪)
题目链接:Codeforces 442B Andrey and Problem 题目大意:Andrey有一个问题,想要朋友们为自己出一道题,如今他有n个朋友.每一个朋友想出题目的概率为pi,可是他能够 ...
- codeforces 442B B. Andrey and Problem(贪心)
题目链接: B. Andrey and Problem time limit per test 2 seconds memory limit per test 256 megabytes input ...
- codeforces#253 D - Andrey and Problem里的数学知识
这道题是这种,给主人公一堆事件的成功概率,他仅仅想恰好成功一件. 于是,问题来了,他要选择哪些事件去做,才干使他的想法实现的概率最大. 我的第一个想法是枚举,枚举的话我想到用dfs,但是认为太麻烦. ...
- Codeforces Round #253 (Div. 1) B. Andrey and Problem
B. Andrey and Problem time limit per test 2 seconds memory limit per test 256 megabytes input standa ...
- Codeforces 442B
题目链接 B. Andrey and Problem time limit per test 2 seconds memory limit per test 256 megabytes input s ...
- [codeforces 528]B. Clique Problem
[codeforces 528]B. Clique Problem 试题描述 The clique problem is one of the most well-known NP-complete ...
- cf442B Andrey and Problem
B. Andrey and Problem time limit per test 2 seconds memory limit per test 256 megabytes input standa ...
- codeforces.com/contest/325/problem/B
http://codeforces.com/contest/325/problem/B B. Stadium and Games time limit per test 1 second memory ...
- CodeForces 867B Save the problem
B. Save the problem! http://codeforces.com/contest/867/problem/B time limit per test 2 seconds memor ...
随机推荐
- Android开发 navigation入门详解
前言 Google 在2018年推出了 Android Jetpack,在Jetpack里有一种管理fragment的新架构模式,那就是navigation. 字面意思是导航,但是除了做APP引导页面 ...
- Docker 尝试安装rabbitmq实践笔记
docker pull rabbitmq 自定義的rabbitmq Dockerfile # base image FROM rabbitmq:3.7-management # running req ...
- Docker的镜像 导出导入
查看当前已经安装的镜像 vagrant@vagrant:~$ sudo docker images REPOSITORY TAG IMAGE ID CREATED SIZE mysql 5.7.22 ...
- bootsrap-----固定布局解析
<div class="container"> container </div> .container { .container-fixed();容器的wi ...
- 树莓派3B+ 人脸识别、摄像头安装和使用
最近在学校里折腾树莓派上的人脸识别,折腾了很久才能用 在此记录下使用的过程和遇到的困难 过程基于超有趣!手把手教你使用树莓派实现实时人脸检测完成的.其中前面opencv的安装是文章中的Raspbian ...
- C/C++ Microsoft Visual Studio c++ DOC Home
{ // https://docs.microsoft.com/zh-cn/cpp/overview/visual-cpp-in-visual-studio?view=vs-2017 // https ...
- Redis中取出值,转成对象
import com.fasterxml.jackson.databind.ObjectMapper; //转成companyEntity CompanyEntity company = mapper ...
- 微信公众号开发API接口大全
在本文中,我们列出微信公众平台上可以使用的API接口以及举例如何在微信公众平台调用这些接口实现相应的功能. 接口调用说明: ① Appkey请使用的微信公众号,不要使用默认的trailuser ② 接 ...
- Sublime Text 3,有了Anaconda就会如虎添翼
作为Python开发环境的Sublime Text 3,有了Anaconda就会如虎添翼.Anaconda是目前最流行也是最有威力的Python代码提示插件. 操作步骤 1.打开package con ...
- ul列表元素在float:right后li元素倒转
发现对li元素进行float:right后,虽然成功右浮动,但是的元素是倒转的 解决方案: 对ul进行右浮动,然后对li左浮动 结果