题目链接:点击打开链接

Description

The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has a very poor system of public highways. The Flatopian government is aware of this problem and has already constructed a number of highways connecting some of the most important towns. However, there are still some towns that you can't reach via a highway. It is necessary to build more highways so that it will be possible to drive between any pair of towns without leaving the highway system.

Flatopian towns are numbered from 1 to N and town i has a position given by the Cartesian coordinates (xi, yi). Each highway connects exaclty two towns. All highways (both the original ones and the ones that are to be built) follow straight lines, and thus their length is equal to Cartesian distance between towns. All highways can be used in both directions. Highways can freely cross each other, but a driver can only switch between highways at a town that is located at the end of both highways.

The Flatopian government wants to minimize the cost of building new highways. However, they want to guarantee that every town is highway-reachable from every other town. Since Flatopia is so flat, the cost of a highway is always proportional to its length. Thus, the least expensive highway system will be the one that minimizes the total highways length.

Input

The input consists of two parts. The first part describes all towns in the country, and the second part describes all of the highways that have already been built.

The first line of the input file contains a single integer N (1 <= N <= 750), representing the number of towns. The next N lines each contain two integers, xi and yi separated by a space. These values give the coordinates of ith town (for i from 1 to N). Coordinates will have an absolute value no greater than 10000. Every town has a unique location.

The next line contains a single integer M (0 <= M <= 1000), representing the number of existing highways. The next M lines each contain a pair of integers separated by a space. These two integers give a pair of town numbers which are already connected by a highway. Each pair of towns is connected by at most one highway.

Output

Write to the output a single line for each new highway that should be built in order to connect all towns with minimal possible total length of new highways. Each highway should be presented by printing town numbers that this highway connects, separated by a space.

If no new highways need to be built (all towns are already connected), then the output file should be created but it should be empty.

Sample Input

9
1 5
0 0
3 2
4 5
5 1
0 4
5 2
1 2
5 3
3
1 3
9 7
1 2

Sample Output

1 6
3 7
4 9
5 7
8 3

题目大意:直接解读样例:9个村庄的坐标,三个已经有了的公路,输出还要建的公路以使公路总长最短。

思路:稠密图求最小生成树的问题,既然是稠密图,可以用Prim算法。已经有了的边要加入最小生成树中,就令这些边的权值为零。这题的邻接矩阵cost[][],注意邻接矩阵的主对角线是0, 而且对称。 每条边的权值为两点之间的距离,因为只是比较距离,所以在prim里直接比较距离的平方就行,这样也可以避免sqrt之后变成double出现精度问题。

还有就是如何输出边的问题,在prim中要求输出边的话,可以新建一个edge[]数组,edge[i] = j表示i是从j延伸过来的,代码中有有三处出现了edge[],仔细思考

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<set>
typedef long long ll;
using namespace std; const int inf = 0x3f3f3f3f;
const int maxn = 800;
bool vis[maxn];
int edge[maxn];
int lowc[maxn];
int cost[maxn][maxn];
void prim(int cost[][maxn], int n){
int ans = 0;
bool ard = false;
memset(vis, false, sizeof(vis));
vis[0] = inf;
for(int i = 1; i < n; i++) {lowc[i] = cost[0][i];edge[i] = 0;}/////////////1
for(int i = 1; i < n; i++){
int minc = inf;
int p = -1;
for(int j = 0; j < n; j++){
if(!vis[j] && minc > lowc[j]){
minc = lowc[j];
p = j;
}
}
if(p == -1)return ; ans += minc;
vis[p] = true;
for(int j = 0; j < n; j++){
if(!vis[j] && lowc[j] > cost[p][j]) {lowc[j] = cost[p][j];edge[j] = p;}/////////////////2
if(edge[p] == j &&cost[p][j] == minc && minc!= 0 ) {printf("%d %d\n", p+1, j+1);}//////////////3
}
}
return ;
} struct Node{
int x, y; }node[maxn]; ll d2(int x1, int y1, int x2, int y2){
ll ans = (x1-x2)*(x1-x2)+(y1-y2)*(y1-y2);
return ans;
} int main(){
int n, m; scanf("%d", &n);
int p = 0; for(int i = 0; i < n; i++){
scanf("%d %d", &node[p].x, &node[p].y);
p++;
}
scanf("%d", &m); int n1, n2;
for(int i = 0; i < n; i++){
for(int j = 0; j < n; j++){
cost[i][j] = d2(node[i].x, node[i].y,node[j].x, node[j].y);
} }
for(int i = 0; i < m; i++){
scanf("%d %d", &n1, &n2);
n1--;n2--;
cost[n1][n2] = 0;
cost[n2][n1] = 0; }
//printf("\n");
/*for(int i = 0; i < n; i++){
printf("no[%d] = %d \n", i, no[i]);
//for(int j = 0; j < n; j++)printf("[%d][%d]:%d ", i, j, cost[i][j]);
printf("\n");
}
printf("\n");*/
prim(cost, n);
return 0;
}

POJ 1751 Highways(最小生成树Prim普里姆,输出边)的更多相关文章

  1. ACM第四站————最小生成树(普里姆算法)

    对于一个带权的无向连通图,其每个生成树所有边上的权值之和可能不同,我们把所有边上权值之和最小的生成树称为图的最小生成树. 普里姆算法是以其中某一顶点为起点,逐步寻找各个顶点上最小权值的边来构建最小生成 ...

  2. 经典问题----最小生成树(prim普里姆贪心算法)

    题目简述:假如有一个无向连通图,有n个顶点,有许多(带有权值即长度)边,让你用在其中选n-1条边把这n个顶点连起来,不漏掉任何一个点,然后这n-1条边的权值总和最小,就是最小生成树了,注意,不可绕成圈 ...

  3. hdu 1233:还是畅通工程(数据结构,图,最小生成树,普里姆(Prim)算法)

    还是畅通工程 Time Limit : 4000/2000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) Total Submis ...

  4. 查找最小生成树:普里姆算法算法(Prim)算法

    一.算法介绍 普里姆算法(Prim's algorithm),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点,且其所有边的权值之 ...

  5. JS实现最小生成树之普里姆(Prim)算法

    最小生成树: 我们把构造连通网的最小代价生成树称为最小生成树.经典的算法有两种,普利姆算法和克鲁斯卡尔算法. 普里姆算法打印最小生成树: 先选择一个点,把该顶点的边加入数组,再按照权值最小的原则选边, ...

  6. POJ 1751 Highways (最小生成树)

    Highways Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit Sta ...

  7. 图的普里姆(Prim)算法求最小生成树

    关于图的最小生成树算法------普里姆算法 首先我们先初始化一张图: 设置两个数据结构来分别代表我们需要存储的数据: lowcost[i]:表示以i为终点的边的最小权值,当lowcost[i]=0说 ...

  8. 最小生成树 Prim(普里姆)算法和Kruskal(克鲁斯特尔)算法

    Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (gra ...

  9. 图解最小生成树 - 普里姆(Prim)算法

    我们在图的定义中说过,带有权值的图就是网结构.一个连通图的生成树是一个极小的连通子图,它含有图中全部的顶点,但只有足以构成一棵树的n-1条边.所谓的最小成本,就是n个顶点,用n-1条边把一个连通图连接 ...

随机推荐

  1. (三)unittest断言方法的介绍

    断言如同在测试用例上,类似于预期结果与实际结果是否一致,如果一致则表示测试通过,Assert断言很好的用于测试结果判断上,更灵活的对预期结果和实际结果进行对比,下面简单的介绍一下unittest的As ...

  2. FIND_IN_SET 精确查找

    FIND_IN_SET(str,strlist) mysql专为精确匹配字符串而设置的函数 一个字符串列表就是一个由一些被‘,’符号分开的自链组成的字符串 1,2,3,4,5,6,7,8,9: 此函数 ...

  3. Swift之代码混淆的调研实施小记

    背景: 最近做APP备案,需要对项目做一系列对优化改进,其中就包括了代码混淆,顾名思义,混淆是为了代码安全,是为了增加逆向破解的难度与复杂度. 目前市面上,免费和付费都有,一些公司对APP加固已经做成 ...

  4. 深入浅出 Typescript 学习笔记

    TypeScript 是 JavaScript 的一个超集,支持 ECMAScript 6 标准. TypeScript 由微软开发的自由和开源的编程语言. TypeScript 设计目标是开发大型应 ...

  5. 《大厂面试》京东+百度一面,不小心都拿了Offer

    你知道的越多,你不知道的越多 点赞再看,养成习惯 本文 GitHub https://github.com/JavaFamily 已收录,有一线大厂面试点思维导图,也整理了很多我的文档,欢迎Star和 ...

  6. vue状态管理vuex从浅入深详细讲解

    1.vuex简介以及创建一个简单的仓库 vuex是专门为vue框架而设计出的一个公共数据管理框架,任何组件都可以通过状态管理仓库数据沟通,也可以统一从仓库获取数据,在比较大型的应用中,数据交互庞大的情 ...

  7. mysql中emoji表情存储

    mysql中emoji表情存储 背景 在mysql 5.7.19,创建的数据库默认选择的编码是utf8 -- UTF-8 Unicode,因此字段默认的编码为utf-8,但在项目开发中存在一个需求:在 ...

  8. mysql 向字段添加数据或者删除数据

    UPDATE table SET cids = CONCAT(cids , ',12') where id=id //向字段添加数据 //因为要用逗号分隔 所以在在前面加了一个逗号 UPDATE ta ...

  9. 加老板qq:804691342一起交流学习 致读者的话:曾经的我们很年少,现在我们要为理想的路疯狂的走下去。

    慕课网 实战班 就业班 2019年12月1号 更新资料整理 300套 新更课程 百度网盘资料链接: 链接:https://pan.baidu.com/s/1qORPsgM6ukDPOSjU5ck5yA ...

  10. 实战_Spring_Cloud

    目录 前言 开发环境 源码地址 创建工程 服务注册中心(Eureka) Eureka Server Eureka Client 注册中心高可用 小结 负载均衡(Ribbon) RestTemplate ...