n

import numpy as np

from cs231n.layers import *
from cs231n.fast_layers import *
from cs231n.layer_utils import * class ThreeLayerConvNet(object):
"""
A three-layer convolutional network with the following architecture: conv - relu - 2x2 max pool - affine - relu - affine - softmax The network operates on minibatches of data that have shape (N, C, H, W)
consisting of N images, each with height H and width W and with C input
channels.
""" def __init__(self, input_dim=(3, 32, 32), num_filters=32, filter_size=7,
hidden_dim=100, num_classes=10, weight_scale=1e-3, reg=0.0,
dtype=np.float32):
"""
Initialize a new network. Inputs:
- input_dim: Tuple (C, H, W) giving size of input data
- num_filters: Number of filters to use in the convolutional layer
- filter_size: Size of filters to use in the convolutional layer
- hidden_dim: Number of units to use in the fully-connected hidden layer
- num_classes: Number of scores to produce from the final affine layer.
- weight_scale: Scalar giving standard deviation for random initialization
of weights.
- reg: Scalar giving L2 regularization strength
- dtype: numpy datatype to use for computation.
"""
C,H,W=input_dim self.params = {}
self.reg = reg
self.dtype = dtype
self.params['W1']=np.random.randn(num_filters,C,filter_size,filter_size)*weight_scale
self.params['b1']=np.zeros(num_filters,)
self.params['W2']=np.random.randn(num_filters*H*W/4,hidden_dim)*weight_scale
self.params['b2']=np.zeros(hidden_dim,)
self.params['W3']=np.random.randn(hidden_dim,num_classes)*weight_scale
self.params['b3']=np.zeros(num_classes,)
# why randn needs int while seros needs tuple!!!!
for k, v in self.params.iteritems():
self.params[k] = v.astype(dtype) def loss(self, X, y=None):
"""
Evaluate loss and gradient for the three-layer convolutional network. Input / output: Same API as TwoLayerNet in fc_net.py.
"""
W1, b1 = self.params['W1'], self.params['b1']
W2, b2 = self.params['W2'], self.params['b2']
W3, b3 = self.params['W3'], self.params['b3'] # pass conv_param to the forward pass for the convolutional layer
filter_size = W1.shape[2]
conv_param = {'stride': 1, 'pad': (filter_size - 1) / 2} # pass pool_param to the forward pass for the max-pooling layer
pool_param = {'pool_height': 2, 'pool_width': 2, 'stride': 2} scores = None
out1,cache1=conv_relu_pool_forward(X,W1,b1,conv_param,pool_param) out=out1.reshape(out1.shape[0],-1) out,cache2=affine_relu_forward(out,W2,b2) scores,cache3=affine_forward(out,W3,b3) if y is None:
return scores loss, grads = 0, {}
loss,dout=softmax_loss(scores,y) loss+=self.reg*0.5*np.sum(W3**2)
loss+=self.reg*0.5*np.sum(W2**2)
loss+=self.reg*0.5*np.sum(W1**2) dout,grads['W3'],grads['b3']=affine_backward(dout,cache3)
grads['W3']+=W3*self.reg dout,grads['W2'],grads['b2']=affine_relu_backward(dout,cache2)
grads['W2']+=W2*self.reg dout=dout.reshape(*out1.shape)
dout,grads['W1'],grads['b1']=conv_relu_pool_backward(dout,cache1)
grads['W1']+=W1*self.reg ############################################################################
# END OF YOUR CODE #
############################################################################ return loss, grads pass

  

n

cnn.py cs231n的更多相关文章

  1. fc_net.py cs231n

    n如果有错误,欢迎指出,不胜感激 import numpy as np from cs231n.layers import * from cs231n.layer_utils import * cla ...

  2. layers.py cs231n

    如果有错误,欢迎指出,不胜感激. import numpy as np def affine_forward(x, w, b): 第一个最简单的 affine_forward简单的前向传递,返回 ou ...

  3. optim.py cs231n

    n如果有错误,欢迎指出,不胜感激 import numpy as np """ This file implements various first-order upda ...

  4. [Keras] mnist with cnn

    典型的卷积神经网络. Keras傻瓜式读取数据:自动下载,自动解压,自动加载. # X_train: array([[[[ 0., 0., 0., ..., 0., 0., 0.], [ 0., 0. ...

  5. 卷积神经网络CNN(Convolutional Neural Networks)没有原理只有实现

    零.说明: 本文的所有代码均可在 DML 找到,欢迎点星星. 注.CNN的这份代码非常慢,基本上没有实际使用的可能,所以我只是发出来,代表我还是实践过而已 一.引入: CNN这个模型实在是有些年份了, ...

  6. 深度学习之卷积神经网络(CNN)详解与代码实现(一)

    卷积神经网络(CNN)详解与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10430073.html 目 ...

  7. python,tensorflow,CNN实现mnist数据集的训练与验证正确率

    1.工程目录 2.导入data和input_data.py 链接:https://pan.baidu.com/s/1EBNyNurBXWeJVyhNeVnmnA 提取码:4nnl 3.CNN.py i ...

  8. 基于MNIST数据的卷积神经网络CNN

    基于tensorflow使用CNN识别MNIST 参数数量:第一个卷积层5x5x1x32=800个参数,第二个卷积层5x5x32x64=51200个参数,第三个全连接层7x7x64x1024=3211 ...

  9. 【转载】 深度学习之卷积神经网络(CNN)详解与代码实现(一)

    原文地址: https://www.cnblogs.com/further-further-further/p/10430073.html ------------------------------ ...

随机推荐

  1. 百度编辑器上传视频以及视频编辑器预览bug解决

    百度编辑器目前来讲是运用比较广泛的一个编辑器了,不仅开源还有中文的文档,所以很受欢迎,不过里面也有许多地方需要开发人员自己调试,其中一个比较常见的问题就是上传视频了,上传视频本身有一些小bug,这个基 ...

  2. 在AlexNet中LRN 局部响应归一化的理

    在AlexNet中LRN 局部响应归一化的理 一.LRN技术介绍: Local Response Normalization(LRN)技术主要是深度学习训练时的一种提高准确度的技术方法.其中caffe ...

  3. 嘴巴题5 「BZOJ1864」[ZJOI2006] 三色二叉树

    1864: [Zjoi2006]三色二叉树 Time Limit: 1 Sec Memory Limit: 64 MB Submit: 1195 Solved: 882 [Submit][Status ...

  4. Linux实现自动登录

    使用expect实现自动登录的脚本,网上有很多,可是都没有一个明白的说明,初学者一般都是照抄.收藏.可是为什么要这么写却不知其然.本文用一个最短的例子说明脚本的原理. 脚本代码如下: #!/usr/b ...

  5. HZOI20190906模拟38 金,斯诺,赤

    题面:https://www.cnblogs.com/Juve/articles/11479415.html T1:高精度gcd,其实不用写高精度取模,gcd还有一种求法 int gcd(int a, ...

  6. layer时间插件

    引入: <link rel="stylesheet" href="<{$cdnsite}>/default/common/layui/css/layui ...

  7. kill 3000

    杀3000端口,是作为一个web未开发人员经常遇到的事情 所以我今天就分享一下我的杀3000端口秘诀 lsof -i: 先要找到端口 node zcool 20u IPv6 0xdddbb4f6f12 ...

  8. c语言学习笔记 关于double

    今天做了个简单的例子,由于没有使用正确的数据类型导致出错,下面是记录 #include <stdio.h> int main(void){ int i; double sum; doubl ...

  9. vim用户设置

    此配置目前使用户mac,linux,win,但是win系统需要提前配置mingw32相关的gcc系统路径等信息. " Setting some decent VIM settings for ...

  10. JEECMS的几个细节

    最近想自己写一些标签,看了一下JEECMS,感觉有些标签还是很值得学习的. 1.图片新闻:可以实现类似于flash切换图片的那种效果 效果: 代码: [@cms.ArtiList chnlId='' ...