【JZOJ5088】【GDOI2017第四轮模拟day2】最小边权和 排序+动态规划
题面
有一张n个点m条边的有向图,每条边有一个互不相同的边权w,有q个询问,要求你从点a经过不超过c条边到点b,要求经过的边权递增并和尽量小,求出最小的边权和,如果没有合法方案则输出-1。
对于100%的数据,n≤150,m≤5000,q≤1000,w≤5000。
100
为了去除递增的条件,
我们先给边按边权从大到小排序,然后逐一加入图中。
现在为了去除边数要求,发现最优路径经过的边最多为\(n\)条,那么我们开一个\(f_{i,j,k}\)表示:
从\(i\)到\(j\)至多走\(k\)条边最小距离。
那么\(f_{i,j,k}\)就可用\(n^2*m\)来预处理。
答案就是\(f_{a,b,c}\),其中如果\(c\)过大,那么给它赋值为\(n\)。
Code
#include<bits/stdc++.h>
#define ll long long
#define fo(i,x,y) for(int i=x;i<=y;i++)
#define fd(i,x,y) for(int i=x;i>=y;i--)
using namespace std;
const int inf=0x7fffffff;
const char* fin="sum.in";
const char* fout="sum.out";
const int maxn=157,maxm=5007;
int n,m,q,f[maxn][maxn][maxn];
struct line{
int x,y,z;
}a[maxm];
bool cmp(line a,line b){return a.z<b.z;}
int main(){
freopen(fin,"r",stdin);
freopen(fout,"w",stdout);
scanf("%d%d%d",&n,&m,&q);
fo(i,1,m) scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].z);
sort(a+1,a+m+1,cmp);
memset(f,127,sizeof f);
fo(i,1,n) f[i][i][0]=0;
fo(i,1,m){
fo(j,1,n)
fo(k,1,n){
if (f[j][a[i].x][k-1]>2000000000) continue;
f[j][a[i].y][k]=min(f[j][a[i].y][k],f[j][a[i].x][k-1]+a[i].z);
}
}
fo(i,1,n) fo(j,1,n) fo(k,1,n) f[j][k][i]=min(f[j][k][i],f[j][k][i-1]);
fo(qq,1,q){
int u,v,po;
scanf("%d%d%d",&u,&v,&po);
int ans=(po>n?f[u][v][n]:f[u][v][po]);
if (ans>2000000000) printf("-1\n");
else printf("%d\n",ans);
}
return 0;
}
【JZOJ5088】【GDOI2017第四轮模拟day2】最小边权和 排序+动态规划的更多相关文章
- 【JZOJ5086】【GDOI2017第四轮模拟day1】数列 折半搜索
题面 有一个长度为n 的排列,现在有一些位置的数已经模糊不清了,你只知道这个排列的逆序对个数是K,你能计算出总共有多少可能的排列吗? 对于100% 的数据,n <=10^3,K<=10^9 ...
- 【JZOJ5064】【GDOI2017第二轮模拟day2】友好城市 Kosarajo算法+bitset+ST表+分块
题面 在Byteland 一共有n 座城市,编号依次为1 到n,这些城市之间通过m 条单向公路连接. 对于两座不同的城市a 和b,如果a 能通过这些单向道路直接或间接到达b,且b 也能如此到达a,那么 ...
- Leetcode 931. Minimum falling path sum 最小下降路径和(动态规划)
Leetcode 931. Minimum falling path sum 最小下降路径和(动态规划) 题目描述 已知一个正方形二维数组A,我们想找到一条最小下降路径的和 所谓下降路径是指,从一行到 ...
- Codeforces 980 并查集/模拟贪心最小字典序 找规律/数去除完全平方因子 逆思维倍增预处理祖先标记点
A /*Huyyt*/ #include<bits/stdc++.h> #define mem(a,b) memset(a,b,sizeof(a)) #define pb push_bac ...
- 省常中模拟 day2
第一题: 题目大意: 有mn颗糖,要装进k个盒子里,使得既可以平均分给n个人,也可以平均分给m个人. 求k的最小值. 解题过程: 1.先看一组小数据(13,21).那么根据贪心的原则很容易想到先拿13 ...
- 【noip模拟】最小点覆盖
Time Limit: 1000ms Memory Limit: 128MB Description 最小点覆盖是指在二分图中,用最小的点集覆盖所有的边.当然,一个二分图的最小点覆盖可能有很 ...
- 【JZOJ5060】【GDOI2017第二轮模拟day1】公路建设 线段树+最小生成树
题面 在Byteland一共有n 个城市,编号依次为1 到n,它们之间计划修建m条双向道路,其中修建第i 条道路的费用为ci. Byteasar作为Byteland 公路建设项目的总工程师,他决定选定 ...
- GDOI2017第二轮模拟day1 总结
平民比赛 这场比赛的暴力分非常友好. 但是我并没有拿到全部的暴力分. 1(暴力分\(60/100\)) 暂时我可以拿的暴力分为\(30/100\),直接mst模拟即可. 然而当时打了个辣鸡莫队,结果爆 ...
- 清北暑假模拟day2 将
/* 爆搜,正解弃坑 */ #include<iostream> #include<cstdio> #include<string> #include<cst ...
随机推荐
- Activiti流程变量
流程变量在整个工作流中扮演很重要的作用 例如:请假流程中有请假天数.请假原因等一些参数都为流程变量的范围.流程变量的作用域范围是流程实例.也就是说各个流程实例的流程变量是不相互影响的. 添加流程变量 ...
- WebSockets
WebSocket 是为了在一个单独的持久连接上提供全双工的双向通信.有关WebSocket API的内容可以参考这里. 这里简单说明下WebSocket在javascript中的用法. 1 WebS ...
- AutoMapper简介
先说说DTO DTO是个什么东东? DTO(Data Transfer Object)就是数据传输对象,说白了就是一个对象,只不过里边全是数据而已. 为什么要用DTO? 1.DTO更注重数据,对领域对 ...
- 使用springmvc实现文件上传
该配置在javaweb上传文件篇中的基础上进行配置:https://www.cnblogs.com/flypig666/p/11745182.html 1.配置文件解析器,在springmvc.xml ...
- 打开springboot的run dashboard
默认情况下,idea的run dashboard是关闭的,当检测到你有多个springboot项目时会弹出提示框,询问是否打开. 如果我们想要自己打开,需要修改配置. 在你的idea的项目目录中,有一 ...
- CF集萃3
CF1118F2 - Tree Cutting 题意:给你一棵树,每个点被染成了k种颜色之一或者没有颜色.你要切断恰k - 1条边使得不存在两个异色点在同一连通块内.求方案数. 解:对每颜色构建最小斯 ...
- jeecmsv9-adminVue 打包出错
F:\jeecms\jeecmsv9-adminVue>node build\build.js - building for production...Error processing file ...
- Android Studio增加assets目录、raw目录
assets与res/raw不同 assets目录是Android的一种特殊目录,用于放置APP所需的固定文件,且该文件被打包到APK中时,不会被编码到二进制文件. Android还存在一种放置在re ...
- Java学习笔记 - 类方法与代码块的执行顺序
类的初始化顺序 使用一个简单的父子类例子来做示范,代码执行顺序在代码后有标注. class Parent { public static String p_StaticField = "父类 ...
- kafka例子程序
//生产端 产生数据 /** * Licensed to the Apache Software Foundation (ASF) under one or more * contributor li ...