题面

有一张n个点m条边的有向图,每条边有一个互不相同的边权w,有q个询问,要求你从点a经过不超过c条边到点b,要求经过的边权递增并和尽量小,求出最小的边权和,如果没有合法方案则输出-1。

对于100%的数据,n≤150,m≤5000,q≤1000,w≤5000。

100

为了去除递增的条件,

我们先给边按边权从大到小排序,然后逐一加入图中。

现在为了去除边数要求,发现最优路径经过的边最多为\(n\)条,那么我们开一个\(f_{i,j,k}\)表示:

从\(i\)到\(j\)至多走\(k\)条边最小距离。

那么\(f_{i,j,k}\)就可用\(n^2*m\)来预处理。

答案就是\(f_{a,b,c}\),其中如果\(c\)过大,那么给它赋值为\(n\)。

Code

#include<bits/stdc++.h>
#define ll long long
#define fo(i,x,y) for(int i=x;i<=y;i++)
#define fd(i,x,y) for(int i=x;i>=y;i--)
using namespace std;
const int inf=0x7fffffff;
const char* fin="sum.in";
const char* fout="sum.out";
const int maxn=157,maxm=5007;
int n,m,q,f[maxn][maxn][maxn];
struct line{
int x,y,z;
}a[maxm];
bool cmp(line a,line b){return a.z<b.z;}
int main(){
freopen(fin,"r",stdin);
freopen(fout,"w",stdout);
scanf("%d%d%d",&n,&m,&q);
fo(i,1,m) scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].z);
sort(a+1,a+m+1,cmp);
memset(f,127,sizeof f);
fo(i,1,n) f[i][i][0]=0;
fo(i,1,m){
fo(j,1,n)
fo(k,1,n){
if (f[j][a[i].x][k-1]>2000000000) continue;
f[j][a[i].y][k]=min(f[j][a[i].y][k],f[j][a[i].x][k-1]+a[i].z);
}
}
fo(i,1,n) fo(j,1,n) fo(k,1,n) f[j][k][i]=min(f[j][k][i],f[j][k][i-1]);
fo(qq,1,q){
int u,v,po;
scanf("%d%d%d",&u,&v,&po);
int ans=(po>n?f[u][v][n]:f[u][v][po]);
if (ans>2000000000) printf("-1\n");
else printf("%d\n",ans);
}
return 0;
}

【JZOJ5088】【GDOI2017第四轮模拟day2】最小边权和 排序+动态规划的更多相关文章

  1. 【JZOJ5086】【GDOI2017第四轮模拟day1】数列 折半搜索

    题面 有一个长度为n 的排列,现在有一些位置的数已经模糊不清了,你只知道这个排列的逆序对个数是K,你能计算出总共有多少可能的排列吗? 对于100% 的数据,n <=10^3,K<=10^9 ...

  2. 【JZOJ5064】【GDOI2017第二轮模拟day2】友好城市 Kosarajo算法+bitset+ST表+分块

    题面 在Byteland 一共有n 座城市,编号依次为1 到n,这些城市之间通过m 条单向公路连接. 对于两座不同的城市a 和b,如果a 能通过这些单向道路直接或间接到达b,且b 也能如此到达a,那么 ...

  3. Leetcode 931. Minimum falling path sum 最小下降路径和(动态规划)

    Leetcode 931. Minimum falling path sum 最小下降路径和(动态规划) 题目描述 已知一个正方形二维数组A,我们想找到一条最小下降路径的和 所谓下降路径是指,从一行到 ...

  4. Codeforces 980 并查集/模拟贪心最小字典序 找规律/数去除完全平方因子 逆思维倍增预处理祖先标记点

    A /*Huyyt*/ #include<bits/stdc++.h> #define mem(a,b) memset(a,b,sizeof(a)) #define pb push_bac ...

  5. 省常中模拟 day2

    第一题: 题目大意: 有mn颗糖,要装进k个盒子里,使得既可以平均分给n个人,也可以平均分给m个人. 求k的最小值. 解题过程: 1.先看一组小数据(13,21).那么根据贪心的原则很容易想到先拿13 ...

  6. 【noip模拟】最小点覆盖

    Time Limit: 1000ms      Memory Limit: 128MB Description 最小点覆盖是指在二分图中,用最小的点集覆盖所有的边.当然,一个二分图的最小点覆盖可能有很 ...

  7. 【JZOJ5060】【GDOI2017第二轮模拟day1】公路建设 线段树+最小生成树

    题面 在Byteland一共有n 个城市,编号依次为1 到n,它们之间计划修建m条双向道路,其中修建第i 条道路的费用为ci. Byteasar作为Byteland 公路建设项目的总工程师,他决定选定 ...

  8. GDOI2017第二轮模拟day1 总结

    平民比赛 这场比赛的暴力分非常友好. 但是我并没有拿到全部的暴力分. 1(暴力分\(60/100\)) 暂时我可以拿的暴力分为\(30/100\),直接mst模拟即可. 然而当时打了个辣鸡莫队,结果爆 ...

  9. 清北暑假模拟day2 将

    /* 爆搜,正解弃坑 */ #include<iostream> #include<cstdio> #include<string> #include<cst ...

随机推荐

  1. string字符串 获取指定位置范围的子字符串

    string   str1="12345678";   str1.Substring(0,4);其中0表示要取得字符串的起始位置,4就是要取得字符串的长度  结果是 "1 ...

  2. fstream文件打开模式

    fstream:对于文件的操作很久两年前就开始使用了,但是仅仅为了达到满足自己需求的目的,就是要么是写,要么是读.从来没有对其进行详细的了解.自己也曾经想过花一点时间去总结一下,这个东西到底应该怎么用 ...

  3. nginx配置虚拟主机的两种方式

    一. 通过端口区分不同的虚拟主机 二. 通过域名区分不同的虚拟主机 备注: 1)hosts文件路径:

  4. [JZOJ5229]【GDOI2018模拟7.14】小奇的糖果

    题目 题目大意 在一个二维的平面上,有一堆有颜色的点,你需要找出一条水平线段,使得这个线段上面(或者是下面)的点的颜色不包含所有的颜色.问点数最大是多少. 思考历程 在一开始,我看错了题目大意. 题目 ...

  5. MySQL系列(十一)--外键约束foreign key的基本使用

    有些时候,为了保证数据的完整性,我们会选择的使用外键约束,例如教师对应的表和课程表中老师的id,这种时候就要使用外键约束了. PS:这里不考虑表结构设计,三范式与反范式等设计问题,基于MySQL8.0 ...

  6. SSH协议的Python实现paramiko

    目录 paramiko安装 SSHClient类与SFTPClient类 SSHClient类的方法 SFTPClient类的方法 paramiko的基本使用 paramiko.SSHClient两种 ...

  7. day21 作业

    1.定义MySQL类 1.对象有id.host.port三个属性 2.定义工具create_id,在实例化时为每个对象随机生成id,保证id唯一 3.提供两种实例化方式,方式一:用户传入host和po ...

  8. 局部内部类为什么只能访问final局部变量,对于成员变量却可以随便访问?

    局部内部类为什么只能访问final局部变量,对于成员变量却可以随便访问? public class OuterClass { private int memberField = 10; public ...

  9. linux负载均衡(什么是负载均衡)

    linux负载均衡(什么是负载均衡) 一.总结 一句话总结: 建立在现有网络结构之上,它提供了一种廉价有效透明的方法扩展网络设备和服务器的带宽.增加吞吐量.加强网络数据处理能力.提高网络的灵活性和可用 ...

  10. python学习笔记3_数据载入、存储及文件格式

    一.丛mysql数据库中读取数据 import pandas as pdimport pymysqlconn = pymysql.connect( host = '***', user = '***' ...