HZOI20190722 B visit 组合数+CRT合并
题目:https://www.cnblogs.com/Juve/articles/11226266.html
solution:
30%:dp
设dp[k][i][j]表示经过k时间,在(i,j)的方案数
#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
#define MAXN 105
using namespace std;
ll dp[MAXN][MAXN<<][MAXN<<],t,n,m,mod;
int main(){
scanf("%lld%lld%lld%lld",&t,&mod,&n,&m);
if(n<) n=-n;
if(m<) m=-m;
if((t-n-m)&){
cout<<<<endl;
return ;
}
int xkl=;
dp[][xkl][xkl]=;
for(ll i=;i<=t;i++){
for(ll j=-t;j<=t;j++){
for(ll k=-t;k<=t;k++){
dp[i][j+xkl][k+xkl]=(dp[i][j+xkl][k+xkl]+dp[i-][j+xkl][k++xkl]+dp[i-][j+xkl][k-+xkl]+dp[i-][j-+xkl][k+xkl]+dp[i-][j++xkl][k+xkl])%mod;
}
}
}
cout<<dp[t][n+xkl][m+xkl]%mod<<endl;
return ;
}
它可以走到-t,所以要防爆
正解:(转载Barca)
我们设ri,le,up,down分别为向右左上下走的步数,且总步数为T,
然后我们只要知道,向一个方向走的步数就能得到其他的,但是我们发现光凭一个是求不出的,
我们再转化一下思路,我们设在上下方向走的步数为k,则up+down=k,
然后又因为他最后必须走到(n,m),所以向上走的步数减去向下走的步数为m,即up-down=m,
同理我们可以求出ri与le的关系,同样是两个方程,
这样我们就可以通过枚举k,来得到向各个方向走的步数,这样就能列出组合数的式子了,即:
ans=
(不知为何我数学公式挂了)
$\sum \limits_{k=m}^{t-n}C_t^k*C_k^{\frac{k-m}{2}}*C_{n-k}^{\frac{t-k-n}{2}}$
-------->这有什么错吗?
但你这样也只有60分,因为mod不一定是质数
那我们可以CRT合并
先对mod分解因数,再用lucas求出mod每个因数下的ans,然后发现一个方程组
$\begin{cases} x & \equiv & ans_1 (mod\ p_1) \\ x & \equiv & ans_2 (mod\ p_2) \\ & \vdots & \\ x & \equiv & ans_n (mod\ p_n) \end{cases}$
from Rorschach_XR 为什么今天我Latex挂掉了,rp++14:38它终于好了
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#define ll long long
#define MAXN 100005
using namespace std;
ll t,n,m,mod,ans[MAXN];
ll q_pow(ll a,ll b,ll p){
ll res=1;
while(b){
if(b&1) res=(res*a)%p;
a=(a*a)%p;
b>>=1;
}
return res%p;
}
ll tot=0,prime[MAXN];
void divide(ll p){//分解质因数
ll t=(ll)sqrt(p);
for(ll i=2;i<=t;i++){
if(p%i==0){
prime[++tot]=i;
p/=i;
}
}
if(p>1) prime[++tot]=p;
}
ll fac[MAXN];
void get_fac(ll p){
fac[0]=fac[1]=1;
for(ll i=2;i<=t;i++)
fac[i]=fac[i-1]*i%p;
}
ll C(ll n,ll m,ll p){
if(m>n) return 0;
return fac[n]*q_pow(fac[m]*fac[n-m]%p,p-2,p)%p;
}
ll lucas(ll n,ll m,ll p){
if(m==0) return 1;
return C(n%p,m%p,p)*lucas(n/p,m/p,p)%p;
}
ll CRT(ll ans[]){
ll res=0;
for(ll i=1;i<=tot;i++)
res=(res+mod/prime[i]*ans[i]%mod*q_pow(mod/prime[i],prime[i]-2,prime[i])%mod)%mod;
return res;
}
int main(){
scanf("%lld%lld%lld%lld",&t,&mod,&n,&m);
if(n<0) n=-n;
if(m<0) m=-m;
divide(mod);//分解质因数
for(ll i=1;i<=tot;i++){
get_fac(prime[i]);//mod(prime[i])意义下的fac
for(ll k=n;k<=t-m;k+=2)//步数不能为1
ans[i]=(ans[i]+lucas(t,k,prime[i])*lucas(k,(k-n)/2,prime[i])%mod*lucas(t-k,(t-m-k)/2,prime[i])%mod)%mod;
}
printf("%lld\n",CRT(ans)%mod);
return 0;
}
HZOI20190722 B visit 组合数+CRT合并的更多相关文章
- 【BZOJ2142】礼物 组合数+CRT
[BZOJ2142]礼物 Description 小E从商店中购买了n件礼物,打算送给m个人,其中送给第i个人礼物数量为wi.请你帮忙计算出送礼物的方案数(两个方案被认为是不同的,当且仅当存在某个人在 ...
- P2480 [SDOI2010]古代猪文 Lucas+CRT合并
\(\color{#0066ff}{ 题目描述 }\) 猪王国的文明源远流长,博大精深. iPig在大肥猪学校图书馆中查阅资料,得知远古时期猪文文字总个数为N.当然,一种语言如果字数很多,字典也相应会 ...
- 华农oj 2192: hzk又在打人【CRT合并/待补】
2192: hzk又在打人 Time Limit: 12 Sec Memory Limit: 512 MB Submit: 52 Solved: 1 [Submit][Status][Web Boar ...
- 组合数取模(lucas定理+CRT合并)(AC)
#include<bits/stdc++.h> #define re register #define int long long using namespace std; ; inlin ...
- 【CF896D】Nephren Runs a Cinema 卡特兰数+组合数+CRT
[CF896D]Nephren Runs a Cinema 题意:一个序列中有n格数,每个数可能是0,1,-1,如果一个序列的所有前缀和都>=0且总和$\in [L,R]$,那么我们称这个序列是 ...
- bzoj3782上学路线(Lucas+CRT+容斥DP+组合计数)
传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3782 有部分分的传送门:https://www.luogu.org/problemnew/ ...
- BZOJ_2142_礼物_扩展lucas+组合数取模+CRT
BZOJ_2142_礼物_扩展lucas+组合数取模 Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同 ...
- OI中组合数的若干求法与CRT
OI中组合数的若干求法与CRT 只是下决心整理一下子呢~ 说明:本篇文章采用\(\binom{a}{b}\)而不是\(C_{a}^b\),以\(p\)指代模数,\(fac_i\)指代\(i!\),\( ...
- 5.20 省选模拟赛 求和 组合数的性质 EGF CRT
LINK:求和 绝妙的一道题目.没做绝对亏了. 对于第一个subtask 考虑直接递推出组合数. 对于第二个subtask 考虑EGF 设两个EGF 都只含偶数项指标且系数为1的那种 一个到n一个到m ...
随机推荐
- 【JZOJ6277】矩阵游戏
description analysis 设所有操作之后,\(f[i]\)表示\(i\)行乘的数,\(g[j]\)表示\(j\)列乘的数,那么 \[Answer=\sum^{n}_{i=1}\sum^ ...
- dp转图论——cf1070A好题
dp的状态转移很像一张有向图:每个状态为一个点,每中转移方案是一条有向边 本题要求是求出最小的数,那我们用状态[i,j]表示模i,数位和为j,那么从每个点出发的十条有向边代表[0,9]十个数 从每个状 ...
- Parse:App开发必备 让应用开发效率提高上百倍
Parse一个应用开发工具, 是由Y Combinator所孵化的创业公司.使用Parse能把效率提高10倍到100倍.通常情况下,从开发用户到推广用户需要花几周时间,用了Parse则只需几小时.[U ...
- ECMAScript 2016,2017 和 2018 中所有新功能的示例
很难追踪 JavaScript(ECMAScript)中的新功能. 想找到有用的代码示例更加困难. 因此,在本文中,我将介绍 TC39 已完成 ES2016,ES2017 和 ES2018(最终草案) ...
- Entity Framework Code First使用者的福音 --- EF Power Tool使用记之二(问题探究)
转:http://www.cnblogs.com/LingzhiSun/archive/2011/06/13/EFPowerTool_2.html 上次为大家介绍EF Power Tool之后,不 ...
- System.Web.HttpCookie.cs
ylbtech-System.Web.HttpCookie.cs 1.程序集 System.Web, Version=4.0.0.0, Culture=neutral, PublicKeyToken= ...
- import、export 和 export default
ES6中 在JavaScript ES6中,export与export default均可用于导出常量.函数.文件.模块等. 你可以在其它文件或模块中通过import+(常量 | 函数 | 文件 | ...
- LINUX挂接Windows文件共享
Windows网络共享的核心是SMB/CIFS,在linux下要挂接(mount)windows的磁盘共享,就必须安装和使用samba 软件包.现在流行的linux发行版绝大多数已经包含了samba软 ...
- uoj33 树上GCD
题意:给你一棵树,根节点为1,每条边长度为1.定义f(u,v)=gcd(u-lca(u,v),lca(u,v)-v),求有多少个无序点对f(u,v)=i.对每个i输出答案. n<=20W. 标程 ...
- 2016.9.24初中部上午NOIP普及组比赛总结
2016.9.24初中部上午NOIP普及组比赛总结 2016.09.24[初中部 NOIP普及组 ]模拟赛 其实这次我没比赛,早上去参加亲子活动去了. 不过在下午我做完了所有的题,感觉还好. 进度 现 ...