Find the median

题意

刚开始集合为空,有n次操作,每次操作往集合里面插入[L[i],R[i]]的值,问每次操作后中位数是多少

分析

由于n比较大,并且数可以达到1e9,我们无法通过权值线段树来进行操作,那么怎么办呢?题目中还有什么性质?插入的值是一段一段的,那么我们是不是能从这些段中入手?维护这些段,怎么维护呢,如果[1,2][2,5]这两段有一个点重合那该怎么办,此时我们可以用一个常规操作把r加1进行分段,什么意思呢例如上例我们分成[1,2][2,3][3,6]那么我们对[1,2]进行操作,那么只要对第一段进行操作即可,如果我们对[2,5]进行操作,那么只要对第二段和第三段进行操作即可,这样就把区间分开来了,相当于把公共点抽出来了放到了两个段中,这样就不会导致本来只想对一段进行操作,结果相邻的段也被操作了的尴尬情形。起始这种操作在线段树中不少见,刷模板题的时候就有过,目的也相同,只是补完才想起来?

还有因为分段的问题,段树会需要n2的点,也就是需要开n8的空间,RE了1W年,我傻了。

#include<bits/stdc++.h>
#define pb push_back
#define F first
#define S second
#define pii pair<int,int>
#define mkp make_pair
using namespace std;
typedef long long ll;
const int maxn=8e5+4;
ll sum[maxn<<2],lazy[maxn<<2];
ll x[maxn],y[maxn],c[maxn*3];
int id1[maxn],id2[maxn];
ll a1,a2,b1,b2,c1,c2,m1,m2;
int sz;
inline void build(int o,int l,int r){
lazy[o]=sum[o]=0;
if(l==r)return ;
int mid=l+r>>1;
build(o<<1,l,mid);
build(o<<1|1,mid+1,r);
}
inline void push_down(int o,int l,int r){
if(lazy[o]){
int mid=l+r>>1;
sum[o<<1]+=lazy[o]*(c[mid+1]-c[l]);
sum[o<<1|1]+=lazy[o]*(c[r+1]-c[mid+1]);
lazy[o<<1]+=lazy[o];
lazy[o<<1|1]+=lazy[o];
lazy[o]=0;
}
}
inline void update(int o,int l,int r,int x,int y)
{
if(x<=l&&y>=r){
sum[o]+=(c[r+1]-c[l]);
lazy[o]++;
}
else {
int mid=l+r>>1;
push_down(o,l,r);
if(mid>=x)update(o<<1,l,mid,x,y);
if(mid<y)update(o<<1|1,mid+1,r,x,y);
sum[o]=sum[o<<1|1]+sum[o<<1];
}
}
inline ll query(int o,int l,int r,ll v){
if(l==r){
int cishu=sum[o]/(c[r+1]-c[l]);
return c[l]+(v-1)/cishu;
}
else {
int mid=l+r>>1;
push_down(o,l,r);
if(sum[o<<1]>=v)return query(o<<1,l,mid,v);
else return query(o<<1|1,mid+1,r,v-sum[o<<1]);
} } int main(){
int n;
scanf("%d",&n);
scanf("%lld%lld%lld%lld%lld%lld",&x[1],&x[2],&a1,&b1,&c1,&m1);
scanf("%lld%lld%lld%lld%lld%lld",&y[1],&y[2],&a2,&b2,&c2,&m2); for(int i=3;i<=n;i++){
x[i]=(1ll*a1*x[i-1]+1ll*b1*x[i-2]+c1)%m1;
y[i]=(1ll*a2*y[i-1]+1ll*b2*y[i-2]+c2)%m2;
}
int zz=0;
for(int i=1;i<=n;i++){
x[i]++,y[i]++;
if(x[i]>y[i])swap(x[i],y[i]);
c[++zz]=x[i];
c[++zz]=y[i]+1;
}
sort(c+1,c+1+zz);
sz=unique(c+1,c+1+zz)-(c+1);
for(int i=1;i<=n;i++){
id1[i]=lower_bound(c+1,c+1+sz,x[i])-c;
id2[i]=lower_bound(c+1,c+1+sz,y[i]+1)-c;
}
sz--;
build(1,1,sz);
ll cnt=0;
for(int i=1;i<=n;i++){
update(1,1,sz,id1[i],id2[i]-1);
cnt+=(y[i]-x[i]+1);
printf("%lld\n",query(1,1,sz,(cnt+1)/2));
}
return 0;
}

2019牛客多校第七场E Find the median 离散化+线段树维护区间段的更多相关文章

  1. 2019牛客多校第七场E Find the median 权值线段树+离散化

    Find the median 题目链接: https://ac.nowcoder.com/acm/contest/887/E 题目描述 Let median of some array be the ...

  2. 2019牛客训练赛第七场 C Governing sand 权值线段树+贪心

    Governing sand 题意 森林里有m种树木,每种树木有一定高度,并且砍掉他要消耗一定的代价,问消耗最少多少代价可以使得森林中最高的树木大于所有树的一半 分析 复杂度分析:n 1e5种树木,并 ...

  3. 牛客多校第三场 G Removing Stones(分治+线段树)

    牛客多校第三场 G Removing Stones(分治+线段树) 题意: 给你n个数,问你有多少个长度不小于2的连续子序列,使得其中最大元素不大于所有元素和的一半 题解: 分治+线段树 线段树维护最 ...

  4. Find the median(2019年牛客多校第七场E题+左闭右开线段树)

    题目链接 传送门 题意 每次往集合里面添加一段连续区间的数,然后询问当前集合内的中位数. 思路 思路很好想,但是卡内存. 当时写的动态开点线段树没卡过去,赛后机房大佬用动态开点过了,\(tql\). ...

  5. 2019牛客多校第七场H Pair 数位DP

    题意:给你一个3个数A, B, C问有多少对pair(i, j),1 <= i <= A, 1 <= j <= B, i AND j > C或 i XOR j < ...

  6. 2019牛客多校第七场C-Governing sand(线段树+枚举)

    Governing sand 题目传送门 解题思路 枚举每一种高度作为最大高度,则需要的最小花费的钱是:砍掉所有比这个高度高的树的所有花费+砍掉比这个高度低的树里最便宜的m棵树的花费,m为高度低的里面 ...

  7. 2019牛客多校第七场 F Energy stones 树状数组+算贡献转化模拟

    Energy stones 题意 有n块石头,每块有初始能量E[i],每秒石头会增长能量L[i],石头的能量上限是C[i],现有m次时刻,每次会把[s[i],t[i]]的石头的能量吸干,问最后得到了多 ...

  8. 2019牛客多校第八场 F题 Flowers 计算几何+线段树

    2019牛客多校第八场 F题 Flowers 先枚举出三角形内部的点D. 下面所说的旋转没有指明逆时针还是顺时针则是指逆时针旋转. 固定内部点的答案的获取 anti(A)anti(A)anti(A)或 ...

  9. 牛客多校第七场 C Bit Compression 思维

    链接:https://www.nowcoder.com/acm/contest/145/C来源:牛客网 A binary string s of length N = 2n is given. You ...

随机推荐

  1. Elasticsearch客户端源码剖析

    注:本文出自博主 Chloneda:个人博客 | 博客园 | Github | Gitee | 知乎 注:本文源链接:https://www.cnblogs.com/chloneda/p/es-cli ...

  2. ROS 环境变量配置

    unbantu16.04 linux 版本,  ros系统 kinetic版本 1. ros系统可以通过rospack find  package_name  /   rosrun package_n ...

  3. Java中List的父类与子类如何转换?

    目录 定义 要点: 子类转父类 父类转子类 定义 A是B的子类,A比B多几条属性 要点: A是B的子类,但List<A>不是List<B>的子类.所以想直接转换是不行的. 子类 ...

  4. 使用pip安装Python库超时解决办法

    如果在国内安装Python库,强烈推荐使用豆瓣的源http://pypi.douban.com/simple/ 可以这样使用 pip install -i http://pypi.douban.com ...

  5. 动手实现一个同步器(AQS)

    在多线程情景下,如果不会某一共享变量采取一些同步机制,很可能发生数据不安全现象,比如购买车票时,当多个人购买时,不加锁就会产生多人买同一张票的现象,显然这是不可取的.所以要有一种同步机制,在某一时刻只 ...

  6. html点击圆形扩散显示界面特效

    开场白 效果 用到的核心代码 思考 探索 源码 兼容性问题 开场白 经常看到某些app有点击扩散的特效,有些当做扩散显示界面,有些扩散改变主题颜色,想在网页上实现一下,所以就有了这个. 效果 不想听逼 ...

  7. MacOs使用CleanMyMac X清除可清除空间

    写在前面 本文介绍如何使用CleanMyMac X清除可清除的空间 可以看到,可清除的空间达到了125.79GB,虽然说不影响系统的使用,但是在使用时间机器进行备份的时候,仍然会将可清除空间当成备份的 ...

  8. Pycharm的项目文件名是红色的原因及解决办法

    今天在继续学习Python时,打开Pycharm后,发现有一个项目下的项目文件名是红色的,如下图: 刚开始我以为是我升级 Pycharm导致的,但我并没有急着去解决,因为并不会影响我执行代码等.当我修 ...

  9. 纪中5日T2 1565. 神秘山庄

    1565. 神秘山庄 (Standard IO) 原题 题目描述 翠亨村是一个神秘的山庄,并不是因为它孕育了伟人孙中山,更神秘的是山庄里有N只鬼.M只兔子,当然还有你.其中每秒钟: 1. 恰有两个生物 ...

  10. Excel时间格合并(年月日+时间点)

    =value(a1)+b2 日期 时间 合并 2018/8/8 14:13 2018/8/8 14:13:00