洛谷P2455 [SDOI2006]线性方程组
高斯消元模板 要求输出解的情况(无穷解/无解)
1. 之前写的丑陋代码
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
const double eps=1e-7;
const int maxn=1000;
int n;//n个变量 n个方程
double A[maxn][maxn];
int Gauss() {//高斯消元 返回值 无解-- -1
//多解 -- 0 唯一解 -- 1(此时解保存在A[i][n+1]中)
int h,l,r;//h--行 l--列
for(h = 1,l = 1;h <= n && l <= n;++ h,++ l){//消系数矩阵(n*n)
r = h;
for(int i = h + 1;i <= n;++ i) if(fabs(A[i][l]) > fabs(A[r][l]) + eps) r=i;//找到当前列所有行中的最大值(做除法时减小误差)
if(r != h) for(int i = h;i <= n + 1;++ i) swap(A[r][i],A[h][i]);
if(fabs(A[h][l]) < eps) {--h;continue;}///当前列h行以下全为0(包括h行)
for(int i = h + 1;i <= n;++ i){
if(fabs(A[i][l]) < eps) continue;
for(int j = n + 1;j >= l;-- j) A[i][j]-=A[i][l]/A[h][l]*A[h][j];//加减消元
}
}
for(int i = h;i <= n;++ i) if(A[i][l] > eps) return -1;//系数均为0但结果不为0 无解
if(h <= n) return 0;//消元后所得方程不足n个(否则h为n+1) 有多解
for(int i = n; i ;-- i){//有唯一解 此时为严格的上三角矩阵 代入消元
for(int j = i + 1;j <= n + 1;++ j)
A[i][n+1]-=A[i][j]*A[j][n+1];
A[i][n+1]/=A[i][i];
}
return 1;
}
int main() {
scanf("%d",&n);
for(int i = 1;i <= n;++ i)
for(int j = 1;j <= n + 1;++ j)
scanf("%lf",&A[i][j]);
int ans = Gauss();
if(ans<=0) printf("%d",ans);
else
for(int i = 1;i <= n;++i){
printf("x%d=", i);
if (fabs(A[i][n+1]) < eps) puts("0");
else printf("%.2f\n", A[i][n+1]);
}
return 0;
}
2. 改进后(更短更好理解)还是很丑陋???
/*
高斯约当消元法
把矩阵直接消成对角矩阵
与普通的高斯消元(消成阶梯矩阵再回代)相比计算量略大
但因为省略回代过程 代码更好写
*/
#include <cstdio>
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cmath>
using namespace std;
const int maxn=110;
int n,ans;
const double eps=1e-8;//控制精度
typedef double Matrix[maxn][maxn];//把二维数组重定义为矩阵
Matrix A;
int Guess(Matrix A,int n){
//传入增广矩阵和n的值 这里默认有n个未知数 n个方程 增广矩阵下标从1开始 有n行 n+1列
//若方程数有m个(m>=n) 可传入m 在此模板基础上微调
//返回值:-1--无实数解 0--有无穷多解 1--有唯一实数解 此时矩阵已被消成对角型
int r; bool flag = false;//flag 判无穷解
for(int i = 1; i <= n;++ i) {//i为枚举的行 也可以理解成当前要消第几个未知数
r = i;
for(int j = i + 1;j <= n;++ j) if(fabs(A[j][i]) > fabs(A[r][i])) r=j;//取包含该未知数的方程里系数绝对值最大的那个方程进行消元 可提高精度
if(fabs(A[r][i]) < eps) {//若最大系数绝对值为0 则包含该未知数的方程系数全是0
//此时说明【可能】有无穷解 之后有可能会出现无解的情况 所以只能先标记再处理 而不能直接返回无穷解
//若题目不要求输出具体是无穷解还是无解 可以直接return
flag = true; continue;}//放弃这一行 处理下一行(下一个未知数
if(r != i) swap(A[i],A[r]);//若系数绝对值最大的不是这一行 就交换这两行(swap直接交换两行的指针 不用for循环再交换)
for(int k = 1;k <= n;++ k) if(k != i)//与除了第i行以外其他行进行消元 直接消成对角型
for(int j = n + 1;j >= 1;-- j)//逆序枚举列 可以避免用中间变量(double)记录需要乘的倍数造成的精度误差
A[k][j] -= A[k][i] / A[i][i] * A[i][j];
}
//以下为判断解的情况 若题目中明确方程一定有解 或者 不要求输出具体是无解还是无穷解 可省略下面几行
//需要先判断是否无解再判断是否为无穷解
for(int i = 1,j;i <= n;++ i){//枚举每一行
for(j = 0;!A[i][j] && j <= n;++ j);//用指针j指向第一个这一行第一个不为零的数
if(j == n + 1 && A[i][j]) return -1;//若指向第n+1列说明系数全为零但结果不为零 方程无解
}
if(flag) return 0;//无穷解
return 1;//唯一解
}
int main()
{
scanf("%d",&n);
for(int i = 1;i <= n;++ i)
for(int j = 1;j <= n + 1;++ j)
scanf("%lf",&A[i][j]);
ans = Guess(A,n);
if(ans != 1) printf("%d",ans);
else
for (int i = 1; i <= n; ++i) {
printf("x%d=", i);
if (fabs(A[i][n+1]/A[i][i]) < eps) puts("0");//防止输出负零(double型)
else printf("%.2f\n", A[i][n+1]/A[i][i]);//已消成对角矩阵 第i+1列除以第i列就是答案
}
return 0;
}
洛谷P2455 [SDOI2006]线性方程组的更多相关文章
- 洛谷P2455 [SDOI2006]线性方程组(高斯消元)
题目描述 已知n元线性一次方程组. 其中:n<=50, 系数是[b][color=red]整数<=100(有负数),bi的值都是整数且<300(有负数)(特别感谢U14968 mmq ...
- P2455 [SDOI2006]线性方程组(real gauss)
P2455 [SDOI2006]线性方程组 (upd 2018.11.08: 这才是真正的高斯消元模板) 找到所消未知数(设为x)系数最大的式子,把它提上来 把这个式子的 x 系数约成1 把这个式子用 ...
- P2455 [SDOI2006]线性方程组
P2455 [SDOI2006]线性方程组 真\(\cdot\)高斯消元模板题 由于各种hack数据被造出来~码量突增~,其实也就多了二三十行 将每行系数消到最多有一个非0数 特殊情况: 在过程同时 ...
- Luogu P2455 [SDOI2006]线性方程组 真•高斯消元板子
果然如Miracle学长所说...调了一天...qwq..还是过不了线下的Hack upd after 40min:刚刚过了 就是多了一个判无解的操作... 当系数都为0,且常数项不为0时,即为无解. ...
- 【luogu P2455 [SDOI2006]线性方程组】 题解
题目链接:https://www.luogu.org/problemnew/show/P2455 无解:最后一列对应元素不为0,前面全是0. 无穷解:一行全是0. 嗯...在消元过程中不要直接拿矩阵元 ...
- C++ 洛谷 P2458 [SDOI2006]保安站岗 from_树形DP
P2458 [SDOI2006]保安站岗 没学树形DP的,看一下. 题目大意:一棵树有N个节点,现在需要将所有节点都看守住,如果我们选择了节点i,那么节点i本身,节点i的父亲和儿子都会被看守住. 每个 ...
- 洛谷 P2458 [SDOI2006]保安站岗
题目传送门 解题思路: 树形DP 可知一个点被控制有且仅有一下三种情况: 1.被父亲节点上的保安控制 2.被儿子节点上的保安控制 3.被当前节点上的保安控制 我们设dp[0/1/2][u]表示u节点所 ...
- [SDOI2006] 线性方程组
洛谷 P2455 传送门 刚开始写了个消成上三角的,结果狂wa. 后来经过研究发现,消成上三角那种不能直接判断无解或无穷多解,需要其它的操作. 所以干脆学了个消成对角线的,写了一发A了. 其实两种消元 ...
- (伪)再扩展中国剩余定理(洛谷P4774 [NOI2018]屠龙勇士)(中国剩余定理,扩展欧几里德,multiset)
前言 我们熟知的中国剩余定理,在使用条件上其实是很苛刻的,要求模线性方程组\(x\equiv c(\mod m)\)的模数两两互质. 于是就有了扩展中国剩余定理,其实现方法大概是通过扩展欧几里德把两个 ...
随机推荐
- php+js实现百度地图多点标注的方法
本文实例讲述了php+js实现百度地图多点标注的方法.分享给大家供大家参考,具体如下: 1.php创建json数据 ? 1 2 $products = $this->product_db-> ...
- 码云及git使用
首次使用码云,将本地文件与之关联(创建仓库之后的页面截图) git -- 版本控制(协同开发软件) git add . # 将当前文件下所有内容添加到临时缓存区 git commit -m " ...
- IntelliJ IDEA 中如何查看一个类的所有继承关系(当前类的所有继承关系图)
IntelliJ IDEA 中如何查看一个类的所有继承关系(当前类的所有继承关系图) .embody{ padding:10px 10px 10px; margin:0 -20px; border-b ...
- Docker搭建的MySQL容器出现 "Too many connections 1040" 最大连接数修改完未生效的解决方案
原文:Docker搭建的MySQL容器出现 "Too many connections 1040" 最大连接数修改完未生效的解决方案 版权声明:本文为博主原创文章,未经博主允许不得 ...
- new 在C++ 中的用法
我对C++一无所知 看参考手册 来看一下参考手册,总共有三种用法 下面是网站上给出的例子 // operator new example #include <iostream> // st ...
- eclipse svn提交忽略文件及文件夹,ignore设置无效..
如果之前提交过此文件,就不能设置忽略该文件了.所以第一次提交的时候要搞清楚再提交. [亲测,的确如此,用 Windows -> Preferences -> Team -> Igno ...
- history-之前发生了什么
查看一下之前服务器上执行过的命令.看一下总是没错的,加上前面看的谁登录过的信息,应该有点用.另外作为admin要注意,不要利用自己的权限去侵犯别人的隐私哦. 到这里先提醒一下,等会你可能会需要更新 H ...
- NOIP2016参赛日志+总结
这个故事告诉我们,成绩出来之前一定要装弱.这些文字是作者拿到程序后测了洛谷民间数据后写的. 2016.11.18 Day 0 早上五点半起床,洗漱完毕,吃了早饭,收拾收拾,七点半从家出发,去了 ...
- bzoj 3598 [Scoi2014]方伯伯的商场之旅——数位dp
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3598 TJ:https://www.cnblogs.com/Zinn/p/9351218.h ...
- Leetcode697.Degree of an Array数组的度
给定一个非空且只包含非负数的整数数组 nums, 数组的度的定义是指数组里任一元素出现频数的最大值. 你的任务是找到与 nums 拥有相同大小的度的最短连续子数组,返回其长度. 示例 1: 输入: [ ...