104. Little shop of flowers

time limit per test: 0.25 sec. 
memory limit per test: 4096 KB

PROBLEM

You want to arrange the window of your flower shop in a most pleasant way. You have bunches of flowers, each being of a different kind, and at least as many vases ordered in a row. The vases are glued onto the shelf and are numbered consecutively 1 through V, where V is the number of vases, from left to right so that the vase 1 is the leftmost, and the vase V is the rightmost vase. The bunches are moveable and are uniquely identified by integers between 1 and F. These id-numbers have a significance: They determine the required order of appearance of the flower bunches in the row of vases so that the bunch i must be in a vase to the left of the vase containing bunch j whenever i < j. Suppose, for example, you have bunch of azaleas (id-number=1), a bunch of begonias (id-number=2) and a bunch of carnations (id-number=3). Now, all the bunches must be put into the vases keeping their id-numbers in order. The bunch of azaleas must be in a vase to the left of begonias, and the bunch of begonias must be in a vase to the left of carnations. If there are more vases than bunches of flowers then the excess will be left empty. A vase can hold only one bunch of flowers.

Each vase has a distinct characteristic (just like flowers do). Hence, putting a bunch of flowers in a vase results in a certain aesthetic value, expressed by an integer. The aesthetic values are presented in a table as shown below. Leaving a vase empty has an aesthetic value of 0.

   

V A S E S

   

1

2

3

4

5

Bunches

1 (azaleas)

7

23

-5

-24

16

2 (begonias)

5

21

-4

10

23

3 (carnations)

-21

5

-4

-20

20

According to the table, azaleas, for example, would look great in vase 2, but they would look awful in vase 4.

To achieve the most pleasant effect you have to maximize the sum of aesthetic values for the arrangement while keeping the required ordering of the flowers. If more than one arrangement has the maximal sum value, any one of them will be acceptable. You have to produce exactly one arrangement.

ASSUMPTIONS

    • 1 ≤ F ≤ 100 where F is the number of the bunches of flowers. The bunches are numbered 1 through F.
    • F ≤ V ≤ 100 where V is the number of vases.
    • -50 £ Aij £ 50 where Aij is the aesthetic value obtained by putting the flower bunch i into the vase j.

Input

The first line contains two numbers: FV.

  • The following F lines: Each of these lines contains V integers, so that Aij is given as the j’th number on the (i+1)’st line of the input file.

Output

  • The first line will contain the sum of aesthetic values for your arrangement.
  • The second line must present the arrangement as a list of F numbers, so that the k’th number on this line identifies the vase in which the bunch k is put

Sample Input

3 5
7 23 -5 -24 16
5 21 -4 10 23
-21 5 -4 -20 20

Sample Output

53
2 4 5 思路:dp[i][j]表示在i结尾处有花且长度为j的最大值,这道题还可以离线变o2
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn=111;
const int inf=0x7ffffff;
int dp[maxn][maxn];
int pre[maxn][maxn];
int a[maxn][maxn];
int F,V;
int heap[maxn];
int main(){
scanf("%d%d",&F,&V);
for(int i=0;i<V;i++)fill(dp[i],dp[i]+V+1,-inf);
for(int i=0;i<F;i++){
for(int j=0;j<V;j++){
scanf("%d",a[i]+j);
}
}
for(int i=0;i<V;i++)dp[i][1]=a[0][i];
for(int i=2;i<=F;i++){
for(int j=i-1;j<V;j++){
for(int k=0;k<j;k++){
if(dp[k][i-1]+a[i-1][j]>dp[j][i]){//更新第i朵花是j的情况
dp[j][i]=dp[k][i-1]+a[i-1][j];
pre[j][i]=k;
}
}
}
}
int ans=-inf,ind;
for(int i=F-1;i<V;i++){
if(ans<dp[i][F]){
ind=i;
ans=dp[i][F];
}
}
for(int i=F;i>0;i--){
heap[i-1]=ind;
ind=pre[ind][i];
}
printf("%d\n",ans);
for(int i=0;i<F;i++){
printf("%d%c",heap[i]+1,i==F-1?'\n':' ');
}
return 0;
}

  

快速切题 sgu104. Little shop of flowers DP 难度:0的更多相关文章

  1. 快速切题 sgu105. Div 3 数学归纳 数位+整除 难度:0

    105. Div 3 time limit per test: 0.25 sec. memory limit per test: 4096 KB There is sequence 1, 12, 12 ...

  2. POJ1157 LITTLE SHOP OF FLOWERS DP

    题目 http://poj.org/problem?id=1157 题目大意 有f个花,k个瓶子,每一个花放每一个瓶子都有一个特定的美学值,问美学值最大是多少.注意,i号花不能出如今某大于i号花后面. ...

  3. Uva LA 3902 - Network 树形DP 难度: 0

    题目 https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_pr ...

  4. ZOJ 3822 Domination 概率dp 难度:0

    Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge Edward is the headm ...

  5. CF 148D Bag of mice 概率dp 难度:0

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  6. 143. Long Live the Queen 树形dp 难度:0

    143. Long Live the Queen time limit per test: 0.25 sec. memory limit per test: 4096 KB The Queen of ...

  7. URAL 1203 Scientific Conference 简单dp 难度:0

    http://acm.timus.ru/problem.aspx?space=1&num=1203 按照结束时间为主,开始时间为辅排序,那么对于任意结束时间t,在此之前结束的任务都已经被处理, ...

  8. HDU 4405 Aeroplane chess 概率DP 难度:0

    http://acm.hdu.edu.cn/showproblem.php?pid=4405 明显,有飞机的时候不需要考虑骰子,一定是乘飞机更优 设E[i]为分数为i时还需要走的步数期望,j为某个可能 ...

  9. POJ 1837 Balance 水题, DP 难度:0

    题目 http://poj.org/problem?id=1837 题意 单组数据,有一根杠杆,有R个钩子,其位置hi为整数且属于[-15,15],有C个重物,其质量wi为整数且属于[1,25],重物 ...

随机推荐

  1. linux磁盘分区详解【转】

    本文装载自:http://blog.csdn.net/aaronychen/article/details/2270048#comments 在学习 Linux 的过程中,安装 Linux 是每一个初 ...

  2. vi如何修改注释颜色

    答:往~/.vimrc或/etc/vimrc的最后添加以下行: hi comment ctermfg=6

  3. luogu3935 Calculating

    标题也许叫整除分块吧 求\(1\)到\(n\)因数的个数\(\sum_{i=1}^n(\sum_{d|n}1)\) 范围\(1e14\)时限3s \(n\sqrt{n}\)的暴力铁定gg 分开考虑 \ ...

  4. 3G下的无压缩视频传输(基于嵌入式linux) (转载)

    本课题研究嵌入式系统在数据采集,3G无线通信方面的应用,开发集视频采集.地理信息采集.无线传输.客户机/服务器模式于一体的车载终端,实现终端采集视频与GPS信息的传输,支持服务器端显示视频与GPS信息 ...

  5. 【Coursera】Security Introduction -Eighth Week(1)

    Security Introduction People With Bad Intent 今天,Bob 向 Alice 发送了一条 "Hello,Allice!" 的信息,他们希望 ...

  6. js分号的重要性

    js中语句末尾可以不加分号, 很多时候在做练习或写几个页面时,我都是不会加的.虽然知道加了会好一点.但就是觉得很敲一句就要多按一次分号键(;)来加分号,而不加也不怎么样,然后就不想加了. 也听说在对j ...

  7. UVa 1001 奶酪里的老鼠(Dijkstra或Floyd)

    https://vjudge.net/problem/UVA-1001 题意:一个奶酪里有n个洞,老鼠在奶酪里的移动速度为10秒一个单位,但是在洞里可以瞬间移动.计算出老鼠从A点到达O点所需的最短时间 ...

  8. SRM 596 DIV2

    250pt: 直接枚举跳过的位置求和即可. int n,m; int ABS(int a) { ) return (-a); else return a; } class FoxAndSightsee ...

  9. Spring 事物机制总结

    Spring两种事物处理机制,一是声明式事务,二是编程式事务 声明式事物 1)Spring的声明式事务管理在底层是建立在AOP的基础之上的.其本质是对方法前后进行拦截,然后在目标方法开始之前创建或者加 ...

  10. android 管理fragment

    要管理fragment们,需使用FragmentManager,要获取它,需在activity中调用方法getFragmentManager(). 你可以用FragmentManager来做以上事情: ...