转:https://github.com/GKalliatakis/Adventures-in-deep-learning

Adventures in deep learning

State-of-the-art Deep Learning publications, frameworks & resources

Overview

Deep convolutional neural networks have led to a series of breakthroughs in large-scale image and video recognition. This repository aims at presenting an elaborate list of the latest works on the field of Deep Learning since 2013.

This is going to be an evolving repository and I will keep updating it (at least twice monthly).


State-of-the-art papers (Descending order based on Google Scholar Citations)

  1. Very deep convolutional networks for large-scale image recognition (VGG-net) (2014) [pdf] [video]
  2. Going deeper with convolutions (GoogLeNet) by Google (2015) [pdf] [video]
  3. Deep learning (2015) [pdf]
  4. Visualizing and Understanding Convolutional Neural Networks (ZF Net) (2014) [pdf] [video]
  5. Fully convolutional networks for semantic segmentation (2015) [pdf]
  6. Deep residual learning for image recognition (ResNet) by Microsoft (2015) [pdf] [video]
  7. Deepface: closing the gap to human-level performance in face verification (2014) [pdf] [video]
  8. Batch normalization: Accelerating deep network training by reducing internal covariate shift (2015) [pdf]
  9. Deep Learning in Neural Networks: An Overview (2015) [pdf]
  10. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification (PReLU) (2014) [pdf]
  11. Faster R-CNN: Towards real-time object detection with region proposal networks (2015) [pdf]
  12. Fast R-CNN (2015) [pdf]
  13. Spatial pyramid pooling in deep convolutional networks for visual recognition (SPP Net) (2014) [pdf] [video]
  14. Generative Adversarial Nets (2014) [pdf]
  15. Spatial Transformer Networks (2015) [pdf] [video]
  16. Understanding deep image representations by inverting them (2015) [pdf]
  17. Deep Learning of Representations: Looking Forward (2013) [pdf]

Classic publications

  • ImageNet Classification with Deep Convolutional Neural Networks (AlexNet) (2012) [pdf]
  • Rectified linear units improve restricted boltzmann machines (ReLU) (2010) [pdf]

Theory

  1. Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images (2015) [pdf]
  2. Distilling the Knowledge in a Neural Network (2015) [pdf]
  3. Deep learning in neural networks: An overview (2015) [pdf]

Books

  • Deep Learning Textbook - An MIT Press book (2016) [html]
  • Learning Deep Architectures for AI [pdf]
  • Neural Nets and Deep Learning [html] [github]

Courses / Tutorials (Webpages unless other is stated)


Resources / Models (GitHub repositories unless other is stated)


Frameworks & Libraries (Descending order based on GitHub stars)

Adventures in deep learning的更多相关文章

  1. Deep learning:五十一(CNN的反向求导及练习)

    前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文 ...

  2. 【深度学习Deep Learning】资料大全

    最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron C ...

  3. 《Neural Network and Deep Learning》_chapter4

    <Neural Network and Deep Learning>_chapter4: A visual proof that neural nets can compute any f ...

  4. Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN

    http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep le ...

  5. paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning

    来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio c ...

  6. Deep Learning 26:读论文“Maxout Networks”——ICML 2013

    论文Maxout Networks实际上非常简单,只是发现一种新的激活函数(叫maxout)而已,跟relu有点类似,relu使用的max(x,0)是对每个通道的特征图的每一个单元执行的与0比较最大化 ...

  7. Deep Learning 23:dropout理解_之读论文“Improving neural networks by preventing co-adaptation of feature detectors”

    理论知识:Deep learning:四十一(Dropout简单理解).深度学习(二十二)Dropout浅层理解与实现.“Improving neural networks by preventing ...

  8. Deep Learning 19_深度学习UFLDL教程:Convolutional Neural Network_Exercise(斯坦福大学深度学习教程)

    理论知识:Optimization: Stochastic Gradient Descent和Convolutional Neural Network CNN卷积神经网络推导和实现.Deep lear ...

  9. 0.读书笔记之The major advancements in Deep Learning in 2016

    The major advancements in Deep Learning in 2016 地址:https://tryolabs.com/blog/2016/12/06/major-advanc ...

随机推荐

  1. Linux桌面“彩”起来:桌面环境及窗口管理器大盘点

    2011-02-22 11:49:50   看到这个标题,很多人一定认为桌面环境和窗口管理器是一回事,但严格来说窗口管理器和桌面环境是有区别的.桌面环境(Desktop Environments)是最 ...

  2. [抄]使用网页进行展示而非PPT

    会议.演讲离不开幻灯片,它可以有效地辅助演讲者进行表达.目前一些流行的工具,比如Windows平台上的PowerPoint.Mac平台上的Keynote等工具,使得幻灯片的制作变得简单.但是这些幻灯片 ...

  3. ROS学习(四)—— 创建ROS Package

    一.caktin Package的组成 1.必须含有 package.xml文件,提供有关程序包的元信息 2.必须含有一个catkin版本的 CmakeLists.txt文件,如果是一个catkin元 ...

  4. Jquery 数组操作(转)

    在jquery中处理JSON数组的情况中遍历用到的比较多,但是用添加移除这些好像不是太多. 今天试过json[i].remove(),json.remove(i)之后都不行,看网页的DOM对象中好像J ...

  5. 【Hibernate】解析hibernate中的缓存

    Hibernate中的缓存一共有三种,一级缓存.二级缓存.查询缓存.缓存除了使用Hibernate自带的缓存,还可以使用redis进行缓存,或是MongoDB进行缓存. 所使用的Demo: User. ...

  6. 搭建自己的 github.io 博客

    1.前言 github.io 是基于 Github 的 repo 管理,这意味着咱们对其是有绝对的控制,这个跟放在第三方的平台比,可控性要好太多. 使用 github pages 服务搭建博客的好处有 ...

  7. yum install mysql56

    官方有写: http://dev.mysql.com/doc/mysql-repo-excerpt/5.6/en/linux-installation-yum-repo.html yum update ...

  8. oracle中exists和in的比较

    exists 是Oracle sql中的一个函数.表示是否存在符合某种条件的记录.如 select * from A,B where A.id=B.id and exists (SELECT * FR ...

  9. Android Studio 环境搭建参考,jdk10javac命令提示不是内部或外部命令

    https://blog.csdn.net/qq_33658730/article/details/78547789 win10下Android Studio和SDK下载.安装和环境变量配置 http ...

  10. java 中获得 资源文件方法

    1 java 中获取资源文件的方法 项目目录如下 获取当前项目的目录路径 方法一:使用类名 MergeDocHandler.class.getClassLoader().getResource(&qu ...