转:https://github.com/GKalliatakis/Adventures-in-deep-learning

Adventures in deep learning

State-of-the-art Deep Learning publications, frameworks & resources

Overview

Deep convolutional neural networks have led to a series of breakthroughs in large-scale image and video recognition. This repository aims at presenting an elaborate list of the latest works on the field of Deep Learning since 2013.

This is going to be an evolving repository and I will keep updating it (at least twice monthly).


State-of-the-art papers (Descending order based on Google Scholar Citations)

  1. Very deep convolutional networks for large-scale image recognition (VGG-net) (2014) [pdf] [video]
  2. Going deeper with convolutions (GoogLeNet) by Google (2015) [pdf] [video]
  3. Deep learning (2015) [pdf]
  4. Visualizing and Understanding Convolutional Neural Networks (ZF Net) (2014) [pdf] [video]
  5. Fully convolutional networks for semantic segmentation (2015) [pdf]
  6. Deep residual learning for image recognition (ResNet) by Microsoft (2015) [pdf] [video]
  7. Deepface: closing the gap to human-level performance in face verification (2014) [pdf] [video]
  8. Batch normalization: Accelerating deep network training by reducing internal covariate shift (2015) [pdf]
  9. Deep Learning in Neural Networks: An Overview (2015) [pdf]
  10. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification (PReLU) (2014) [pdf]
  11. Faster R-CNN: Towards real-time object detection with region proposal networks (2015) [pdf]
  12. Fast R-CNN (2015) [pdf]
  13. Spatial pyramid pooling in deep convolutional networks for visual recognition (SPP Net) (2014) [pdf] [video]
  14. Generative Adversarial Nets (2014) [pdf]
  15. Spatial Transformer Networks (2015) [pdf] [video]
  16. Understanding deep image representations by inverting them (2015) [pdf]
  17. Deep Learning of Representations: Looking Forward (2013) [pdf]

Classic publications

  • ImageNet Classification with Deep Convolutional Neural Networks (AlexNet) (2012) [pdf]
  • Rectified linear units improve restricted boltzmann machines (ReLU) (2010) [pdf]

Theory

  1. Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images (2015) [pdf]
  2. Distilling the Knowledge in a Neural Network (2015) [pdf]
  3. Deep learning in neural networks: An overview (2015) [pdf]

Books

  • Deep Learning Textbook - An MIT Press book (2016) [html]
  • Learning Deep Architectures for AI [pdf]
  • Neural Nets and Deep Learning [html] [github]

Courses / Tutorials (Webpages unless other is stated)


Resources / Models (GitHub repositories unless other is stated)


Frameworks & Libraries (Descending order based on GitHub stars)

Adventures in deep learning的更多相关文章

  1. Deep learning:五十一(CNN的反向求导及练习)

    前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文 ...

  2. 【深度学习Deep Learning】资料大全

    最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron C ...

  3. 《Neural Network and Deep Learning》_chapter4

    <Neural Network and Deep Learning>_chapter4: A visual proof that neural nets can compute any f ...

  4. Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN

    http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep le ...

  5. paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning

    来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio c ...

  6. Deep Learning 26:读论文“Maxout Networks”——ICML 2013

    论文Maxout Networks实际上非常简单,只是发现一种新的激活函数(叫maxout)而已,跟relu有点类似,relu使用的max(x,0)是对每个通道的特征图的每一个单元执行的与0比较最大化 ...

  7. Deep Learning 23:dropout理解_之读论文“Improving neural networks by preventing co-adaptation of feature detectors”

    理论知识:Deep learning:四十一(Dropout简单理解).深度学习(二十二)Dropout浅层理解与实现.“Improving neural networks by preventing ...

  8. Deep Learning 19_深度学习UFLDL教程:Convolutional Neural Network_Exercise(斯坦福大学深度学习教程)

    理论知识:Optimization: Stochastic Gradient Descent和Convolutional Neural Network CNN卷积神经网络推导和实现.Deep lear ...

  9. 0.读书笔记之The major advancements in Deep Learning in 2016

    The major advancements in Deep Learning in 2016 地址:https://tryolabs.com/blog/2016/12/06/major-advanc ...

随机推荐

  1. Linux和windows下内核socket优化项 (转)

    问题: No buffer space available Linux: vi /etc/sysctl.conf net.core.netdev_max_backlog = 30000  每个网络接口 ...

  2. 在Java中使用Kafka

    Producer部分 Producer在实例化后, 对外提供send方法, 用于将数据送到指定的topic和partition; 以及在退出时需要的destroy方法. 接口 KafkaProduce ...

  3. docker build 指定dockerfile

    1. Dockerfile文件使用 docker build命令会根据Dockerfile文件及上下文构建新Docker镜像.构建上下文是指Dockerfile所在的本地路径或一个URL(Git仓库地 ...

  4. shell 脚本启动spring boot的jar 包

    #!/bin/bash # kill java进程 java_sso_prod_pid=`ps aux|grep sso.jar|grep -v "grep"|awk '{prin ...

  5. (原)InsightFace及其mxnet代码

    转载请注明出处: http://www.cnblogs.com/darkknightzh/p/8525287.html 论文 InsightFace : Additive Angular Margin ...

  6. Swift3 颜色转换成图片Image

    Swift3下的转换写法: /// 将颜色转换为图片 /// /// - Parameter color: <#color description#> /// - Returns: < ...

  7. jQuery对象复制

    // 浅层复制(只复制顶层的非 object 元素) var newObject = jQuery.extend({}, oldObject); // 深层复制(一层一层往下复制直到最底层) var ...

  8. mysql--SQL编程(关于mysql中的日期,实例,判断生日是否为闰年) 学习笔记2.1

    关于日期处理的实例: 从mysql给出的 example 这个是官方源码下载以及导入,http://dev.mysql.com/doc/employee/en/employees-installati ...

  9. Xcode之断点调试

    断点类型: 1.异常断点 异常断点是代码出现问题导致编译器抛出异常时触发的断点.它在断点导航器中设置.点击+号,选择Exception Breakpoint选项.如下图3-1所示 Exception选 ...

  10. 【LeetCode】206. Reverse Linked List (2 solutions)

    Reverse Linked List Reverse a singly linked list. click to show more hints. Hint: A linked list can ...