Adventures in deep learning
转:https://github.com/GKalliatakis/Adventures-in-deep-learning
Adventures in deep learning
State-of-the-art Deep Learning publications, frameworks & resources
Overview
Deep convolutional neural networks have led to a series of breakthroughs in large-scale image and video recognition. This repository aims at presenting an elaborate list of the latest works on the field of Deep Learning since 2013.
This is going to be an evolving repository and I will keep updating it (at least twice monthly).
State-of-the-art papers (Descending order based on Google Scholar Citations)
- Very deep convolutional networks for large-scale image recognition (VGG-net) (2014) [pdf] [video]
- Going deeper with convolutions (GoogLeNet) by Google (2015) [pdf] [video]
- Deep learning (2015) [pdf]
- Visualizing and Understanding Convolutional Neural Networks (ZF Net) (2014) [pdf] [video]
- Fully convolutional networks for semantic segmentation (2015) [pdf]
- Deep residual learning for image recognition (ResNet) by Microsoft (2015) [pdf] [video]
- Deepface: closing the gap to human-level performance in face verification (2014) [pdf] [video]
- Batch normalization: Accelerating deep network training by reducing internal covariate shift (2015) [pdf]
- Deep Learning in Neural Networks: An Overview (2015) [pdf]
- Delving deep into rectifiers: Surpassing human-level performance on imagenet classification (PReLU) (2014) [pdf]
- Faster R-CNN: Towards real-time object detection with region proposal networks (2015) [pdf]
- Fast R-CNN (2015) [pdf]
- Spatial pyramid pooling in deep convolutional networks for visual recognition (SPP Net) (2014) [pdf] [video]
- Generative Adversarial Nets (2014) [pdf]
- Spatial Transformer Networks (2015) [pdf] [video]
- Understanding deep image representations by inverting them (2015) [pdf]
- Deep Learning of Representations: Looking Forward (2013) [pdf]
Classic publications
- ImageNet Classification with Deep Convolutional Neural Networks (AlexNet) (2012) [pdf]
- Rectified linear units improve restricted boltzmann machines (ReLU) (2010) [pdf]
Theory
- Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images (2015) [pdf]
- Distilling the Knowledge in a Neural Network (2015) [pdf]
- Deep learning in neural networks: An overview (2015) [pdf]
Books
- Deep Learning Textbook - An MIT Press book (2016) [html]
- Learning Deep Architectures for AI [pdf]
- Neural Nets and Deep Learning [html] [github]
Courses / Tutorials (Webpages unless other is stated)
- Caffe Tutorial (CVPR 2015)
- Tutorial on Deep Learning for Vision (CVPR 2014)
- Introduction to Deep Learning with Python - Theano Tutorials [github]
- Deep Learning Tutorials with Theano/Python [github]
- Deep Learning: Take machine learning to the next level (by udacity)
- DeepLearnToolbox – A Matlab toolbox for Deep Learning [github]
- Stanford Matlab-based Deep Learning [github]
- Stanford 231n Class: Convolutional Neural Networks for Visual Recognition [github]
- Deep Learning Course (by Yann LeCun-2016)
- Generative Models (by OpenAI)
- An introduction to Generative Adversarial Networks (with code in TensorFlow)
Resources / Models (GitHub repositories unless other is stated)
- VGG-net
- GoogLeNet
- ResNet - MatConvNet implementation
- AlexNet
- Fully Convolutional Networks for Semantic Segmentation
- OverFeat
- SPP_net
- Fast R-CNN
- Faster R-CNN
- Generative Adversarial Networks (GANs)
- Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks)
- ResNeXt: Aggregated Residual Transformations for Deep Neural Networks)
- MultiPath Network training code
Frameworks & Libraries (Descending order based on GitHub stars)
- Tensorflow by Google [C++ and CUDA]: [homepage] [github]
- Caffe by Berkeley Vision and Learning Center (BVLC) [C++]: [homepage] [github] [Installation Instructions]
- Keras by François Chollet [Python]: [homepage] [github]
- Microsoft Cognitive Toolkit - CNTK [C++]: [homepage] [github]
- MXNet adapted by Amazon [C++]: [homepage] [github]
- Torch by Collobert, Kavukcuoglu & Clement Farabet, widely used by Facebook [Lua]: [homepage] [github]
- Convnetjs by Andrej Karpathy [JavaScript]: [homepage] [github]
- Theano by Université de Montréal [Python]: [homepage] [github]
- Deeplearning4j by startup Skymind [Java]: [homepage] [github]
- Paddle by Baidu [C++]: [homepage] [github]
- Deep Scalable Sparse Tensor Network Engine (DSSTNE) by Amazon [C++]: [github]
- Neon by Nervana Systems [Python & Sass]: [homepage] [github]
- Chainer [Python]: [homepage] [github]
- h2o [Java]: [homepage] [github]
- Brainstorm by Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA) [Python]: [github]
- Matconvnet by Andrea Vedaldi [Matlab]: [homepage] [github]
Adventures in deep learning的更多相关文章
- Deep learning:五十一(CNN的反向求导及练习)
前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文 ...
- 【深度学习Deep Learning】资料大全
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books by Yoshua Bengio, Ian Goodfellow and Aaron C ...
- 《Neural Network and Deep Learning》_chapter4
<Neural Network and Deep Learning>_chapter4: A visual proof that neural nets can compute any f ...
- Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN
http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep le ...
- paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning
来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio c ...
- Deep Learning 26:读论文“Maxout Networks”——ICML 2013
论文Maxout Networks实际上非常简单,只是发现一种新的激活函数(叫maxout)而已,跟relu有点类似,relu使用的max(x,0)是对每个通道的特征图的每一个单元执行的与0比较最大化 ...
- Deep Learning 23:dropout理解_之读论文“Improving neural networks by preventing co-adaptation of feature detectors”
理论知识:Deep learning:四十一(Dropout简单理解).深度学习(二十二)Dropout浅层理解与实现.“Improving neural networks by preventing ...
- Deep Learning 19_深度学习UFLDL教程:Convolutional Neural Network_Exercise(斯坦福大学深度学习教程)
理论知识:Optimization: Stochastic Gradient Descent和Convolutional Neural Network CNN卷积神经网络推导和实现.Deep lear ...
- 0.读书笔记之The major advancements in Deep Learning in 2016
The major advancements in Deep Learning in 2016 地址:https://tryolabs.com/blog/2016/12/06/major-advanc ...
随机推荐
- 转:ogre的编译及安装
ogre在Windows环境下的编译及安装过程: 1.从下面网址下载OGRE 1.8.1 Source For Windows.Dependencies source repository with ...
- 转:ArcEngine10.0+VS2010+MFC 扫盲贴 .
项目用vc6.0+MapObject写的,现在却要升级成AE10,研究了好多天的AE10.0和c++,中间的曲折也不想多说了,废话少数,下面是实现ArcEngine基本功能的,仅供参考,如能帮到同仁们 ...
- ios用户登录记住密码
登录 记录已登录用户步骤,存入偏好设置中存储放入一个数组. 具体存储 :存储用户到偏好设置中,其中用户是一个数组 向服务器响应客户端后的一些操作 (如果响应数据成功)其中用户和密码是一一对应的 .1先 ...
- java计算时间差, 日期差小结
转自:https://blog.csdn.net/sy793314598/article/details/79544796 1.java 7中的日历类Calendar Calendar类使用其静态的g ...
- HDUOJ-----A == B ?
A == B ? Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total S ...
- java WSDL接口webService实现方式
一.使用JDK生成WSDL的对象类 1.cmd进入JDK的bin文件中 执行命令 wsimport -keep -p com.demo.client http://localhost:8080/Dem ...
- C# 两个时间相减 返回 对应天时分秒
"; //string sdsdsdsds = "1"; , '); //不足2位 就补充0 足2位 就不变 DateTime dts1 = DateTime.Now; ...
- .NET压缩图片保存 .NET CORE WebApi Post跨域提交 C# Debug和release判断用法 tofixed方法 四舍五入 (function($){})(jQuery); 使用VUE+iView+.Net Core上传图片
.NET压缩图片保存 需求: 需要将用户后买的图片批量下载打包压缩,并且分不同的文件夹(因:购买了多个用户的图片情况) 文章中用到了一个第三方的类库,Nuget下载 SharpZipLib 目前用 ...
- xtrabackup 源码安装
安装依赖包:这些依赖包必须要先安装好 # yum install cmake libaio-devel ncurses-devel bzip2-devel libxml2-devel libgcryp ...
- 实现一个简单的android开关
近期在学习android中的graphics中绘图系列.依照大神思路.找葫芦画瓢实现了一个开关.如图下: 记录一下实现方式: 1.画背景 上图形状.分成两个半圆与一个矩形,那么代码能够写成: priv ...