POJ 2253 - Frogger - [dijkstra求最短路]
Time Limit: 1000MS Memory Limit: 65536K
Description
Unfortunately Fiona's stone is out of his jump range. Therefore Freddy considers to use other stones as intermediate stops and reach her by a sequence of several small jumps.
To execute a given sequence of jumps, a frog's jump range obviously must be at least as long as the longest jump occuring in the sequence.
The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones.
You are given the coordinates of Freddy's stone, Fiona's stone and all other stones in the lake. Your job is to compute the frog distance between Freddy's and Fiona's stone.
Input
Output
Sample Input
2
0 0
3 4 3
17 4
19 4
18 5 0
Sample Output
Scenario #1
Frog Distance = 5.000 Scenario #2
Frog Distance = 1.414
题解:
参考:http://www.cnblogs.com/tanhehe/p/3169865.html
另外请参考:http://blog.csdn.net/PKU_ZZY/article/details/52434239
Dijkstra算法模板:
const int INF=0x3f3f3f3f;
const int maxn=; int n; //n个节点
int d[maxn],edge[maxn][maxn];
bool vis[maxn]; //标记是否在集合S中 /*
集合V:图上所有节点
集合S:已经确定正确计算出d[]的节点
集合Q:V-S
*/
void dijkstra()
{
for(int i=;i<=n;i++) d[i]=(i==)?:INF;
memset(vis,,sizeof(vis)); for(int i=;i<=n;i++)
{
int mini=INF,u;
for(int j=;j<=n;j++)
{
if(!vis[j] && d[j]<mini) mini=d[(u=j)]; //寻找集合Q里d[u]最小的那个点u
}
vis[u]=; //放入集合S for(int v=;v<=n;v++)
{
if(!vis[v]) dist[v]=min(dist[v],dist[u]+edge[u][v]); //对集合Q中,所有与点u相连接的点进行松弛
}
}
}
AC代码:
#include<cstdio>
#include<cmath>
#define N 205
#define INF 1e60
double max(double a,double b){return a>b?a:b;}
double edge[N][N],d[N];
struct Point{
int x,y;
}point[N];
int n;
bool vis[N];
double dist(Point a,Point b){
return sqrt( (b.y-a.y)*(b.y-a.y) + (b.x-a.x)*(b.x-a.x) );
}
void init()
{
for(int i=;i<=n;i++)
{
if(i==) d[]=0.0 , vis[]=;
else d[i]=dist(point[],point[i]) , vis[i]=; for(int j=i;j<=n;j++)
{
edge[i][j]=edge[j][i]=dist(point[i],point[j]);
}
}
}
double dijkstra()
{
for(int i=;i<=n;i++)
{
double min=INF;int x;
for(int j=;j<=n;j++) if(!vis[j] && d[j] <= min) min=d[(x=j)];//找集合Q( Q=G.V - S )里d[x]最小的那个点x
vis[x]=;//把点x放进集合S里
for(int y=;y<=n;y++)//把在集合Q里所有与点x相邻的点都找出来松弛,因为这里青蛙可以在任意来两石头间跳,所以直接遍历 G.V - S 即可
{
if(!vis[y]){
double tmp = max(d[x], edge[x][y]);
if(d[y] > tmp) d[y] = tmp;
}
}
}
return d[];
}
int main()
{
int kase=;
while(scanf("%d",&n) && n!=)
{
for(int i=;i<=n;i++) scanf("%d%d",&point[i].x,&point[i].y);
init();
printf("Scenario #%d\n",++kase);
printf("Frog Distance = %.3f\n\n",dijkstra());
}
}
堆优化的Dijkstra算法:
const int maxn=;
const int INF=0x3f3f3f3f; int n,m; //n个节点,m条边 struct Edge
{
int u,v,w;
Edge(int u,int v,int w){this->u=u,this->v=v,this->w=w;}
};
vector<Edge> E;
vector<int> G[maxn];
void init(int l,int r)
{
E.clear();
for(int i=l;i<=r;i++) G[i].clear();
}
void addedge(int u,int v,int w)
{
E.push_back(Edge(u,v,w));
G[u].push_back(E.size()-);
} bool vis[maxn];
int d[maxn]; //标记是否在集合S中
void dijkstra(int st)
{
for(int i=;i<=n;i++) d[i]=(i==st)?:INF;
memset(vis,,sizeof(vis)); priority_queue< pair<int,int> > Q; //此处的Q即集合Q,只不过由于那些d[i]=INF根本不可能被选到,所以就不放到优先队列中
Q.push(make_pair(,st));
while(!Q.empty())
{
int now=Q.top().second; Q.pop(); //选取集合Q中d[x]最小的那个点x
if(vis[now]) continue; //如果节点x已经在集合S中,就直接略过
vis[now]=; //将节点x放到集合S中,代表节点x的d[x]已经计算完毕
for(int i=;i<G[now].size();i++) //松弛从节点x出发的边
{
Edge &e=E[G[now][i]]; int nxt=e.v;
if(vis[nxt]) continue;
if(d[nxt]>d[now]+e.w)
{
d[nxt]=d[now]+e.w;
Q.push(make_pair(-d[nxt],nxt));
}
}
}
}
POJ 2253 - Frogger - [dijkstra求最短路]的更多相关文章
- poj 2253 Frogger dijkstra算法实现
点击打开链接 Frogger Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 21653 Accepted: 7042 D ...
- POJ 2253 Frogger (求某两点之间所有路径中最大边的最小值)
题意:有两只青蛙,a在第一个石头,b在第二个石头,a要到b那里去,每种a到b的路径中都有最大边,求所有这些最大边的最小值.思路:将所有边长存起来,排好序后,二分枚举答案. 时间复杂度比较高,344ms ...
- POJ - 2253 Frogger 单源最短路
题意:给定n个点的坐标,问从第一个点到第二个点的最小跳跃范围.d(i)表示从第一个点到达第i个点的最小跳跃范围. AC代码 #include <cstdio> #include <c ...
- POJ 2253 Frogger(dijkstra 最短路
POJ 2253 Frogger Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fion ...
- POJ. 2253 Frogger (Dijkstra )
POJ. 2253 Frogger (Dijkstra ) 题意分析 首先给出n个点的坐标,其中第一个点的坐标为青蛙1的坐标,第二个点的坐标为青蛙2的坐标.给出的n个点,两两双向互通,求出由1到2可行 ...
- 最短路(Floyd_Warshall) POJ 2253 Frogger
题目传送门 /* 最短路:Floyd算法模板题 */ #include <cstdio> #include <iostream> #include <algorithm& ...
- POJ 2253 Frogger ,poj3660Cow Contest(判断绝对顺序)(最短路,floyed)
POJ 2253 Frogger题目意思就是求所有路径中最大路径中的最小值. #include<iostream> #include<cstdio> #include<s ...
- POJ 2253 Frogger (dijkstra 最大边最小)
Til the Cows Come Home 题目链接: http://acm.hust.edu.cn/vjudge/contest/66569#problem/A Description The i ...
- 关于dijkstra求最短路(模板)
嗯.... dijkstra是求最短路的一种算法(废话,思维含量较低, 并且时间复杂度较为稳定,为O(n^2), 但是注意:!!!! 不能处理边权为负的情况(但SPFA可以 ...
随机推荐
- GoF--装饰者设计模式
顾名思义,装饰模式就是给一个对象增加一些新的功能,而且是动态的,要求装饰对象和被装饰对象实现同一个接口,装饰对象持有被装饰对象的实例. 装饰器模式的应用场景: 1.需要扩展一个类的功能. 2.动态的为 ...
- 【代码审计】EasySNS_V1.6 前台XSS跨站脚本漏洞分析
0x00 环境准备 EasySNS官网:http://www.imzaker.com/ 网站源码版本:EasySNS极简社区V1.60 程序源码下载:http://es.imzaker.com/ind ...
- 【权限维持】window服务端常见后门技术
0x00 前言 未知攻焉知防,攻击者在获取服务器权限后,通常会用一些后门技术来维持服务器权限,服务器一旦被植入后门,攻击者如入无人之境.这里整理一些window服务端常见的后门技术,了解攻击者的常见后 ...
- Ansible Playbook 使用变量
如何在 Playbook 中定义并使用变量: vars: - user: "test" # 定义变量 tasks: - name: create user user: name=& ...
- N76E003之定时器3
定时器3是一个16位自动重装载,向上计数定时器.用户可以通过配置T3PS[2:0] (T3CON[2:0])选择预分频,并写入重载值到R3H 和R3L寄存器来决定它的溢出速率.用户可以设置TR3 (T ...
- 安装win7到移动硬盘
jpg改rar http://www.360doc.com/content/16/0816/10/19373891_583556875.shtml
- HIGHGUI ERROR: V4L/V4L2: VIDIOC_S_CROP错误解决方法
在树莓派上运行在windows上正确的程序, 报错: HIGHGUI ERROR: V4L/V4L2: VIDIOC_S_CROP OpenCV Error: Assertion failed (s ...
- Android设计和开发系列第一篇:Notifications通知(Design)
Design篇 Notifications The notification system allows users to keep informed about relevant and timel ...
- chrome 安装页面编码选择插件
https://chrome.google.com/webstore/detail/set-character-encoding/bpojelgakakmcfmjfilgdlmhefphglae se ...
- 【前端积累】javascript事件
什么是事件? 事件是一种异步编程的实现方式,本质上是程序各个组成部分之间的通信.就是文档或浏览器窗口发生的一些特定的交互瞬间(某种动作). 1.事件流 事件流描述的是从页面中接收事件的顺序. 1)事件 ...