Time Limit: 1000MS Memory Limit: 65536K

Description

Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sitting on another stone. He plans to visit her, but since the water is dirty and full of tourists' sunscreen, he wants to avoid swimming and instead reach her by jumping. 
Unfortunately Fiona's stone is out of his jump range. Therefore Freddy considers to use other stones as intermediate stops and reach her by a sequence of several small jumps. 
To execute a given sequence of jumps, a frog's jump range obviously must be at least as long as the longest jump occuring in the sequence. 
The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones.

You are given the coordinates of Freddy's stone, Fiona's stone and all other stones in the lake. Your job is to compute the frog distance between Freddy's and Fiona's stone.

Input

The input will contain one or more test cases. The first line of each test case will contain the number of stones n (2<=n<=200). The next n lines each contain two integers xi,yi (0 <= xi,yi <= 1000) representing the coordinates of stone #i. Stone #1 is Freddy's stone, stone #2 is Fiona's stone, the other n-2 stones are unoccupied. There's a blank line following each test case. Input is terminated by a value of zero (0) for n.

Output

For each test case, print a line saying "Scenario #x" and a line saying "Frog Distance = y" where x is replaced by the test case number (they are numbered from 1) and y is replaced by the appropriate real number, printed to three decimals. Put a blank line after each test case, even after the last one.

Sample Input

2
0 0
3 4 3
17 4
19 4
18 5 0

Sample Output

Scenario #1
Frog Distance = 5.000 Scenario #2
Frog Distance = 1.414

题解:

参考:http://www.cnblogs.com/tanhehe/p/3169865.html

另外请参考:http://blog.csdn.net/PKU_ZZY/article/details/52434239

Dijkstra算法模板:

const int INF=0x3f3f3f3f;
const int maxn=; int n; //n个节点
int d[maxn],edge[maxn][maxn];
bool vis[maxn]; //标记是否在集合S中 /*
集合V:图上所有节点
集合S:已经确定正确计算出d[]的节点
集合Q:V-S
*/
void dijkstra()
{
for(int i=;i<=n;i++) d[i]=(i==)?:INF;
memset(vis,,sizeof(vis)); for(int i=;i<=n;i++)
{
int mini=INF,u;
for(int j=;j<=n;j++)
{
if(!vis[j] && d[j]<mini) mini=d[(u=j)]; //寻找集合Q里d[u]最小的那个点u
}
vis[u]=; //放入集合S for(int v=;v<=n;v++)
{
if(!vis[v]) dist[v]=min(dist[v],dist[u]+edge[u][v]); //对集合Q中,所有与点u相连接的点进行松弛
}
}
}

AC代码:

 #include<cstdio>
#include<cmath>
#define N 205
#define INF 1e60
double max(double a,double b){return a>b?a:b;}
double edge[N][N],d[N];
struct Point{
int x,y;
}point[N];
int n;
bool vis[N];
double dist(Point a,Point b){
return sqrt( (b.y-a.y)*(b.y-a.y) + (b.x-a.x)*(b.x-a.x) );
}
void init()
{
for(int i=;i<=n;i++)
{
if(i==) d[]=0.0 , vis[]=;
else d[i]=dist(point[],point[i]) , vis[i]=; for(int j=i;j<=n;j++)
{
edge[i][j]=edge[j][i]=dist(point[i],point[j]);
}
}
}
double dijkstra()
{
for(int i=;i<=n;i++)
{
double min=INF;int x;
for(int j=;j<=n;j++) if(!vis[j] && d[j] <= min) min=d[(x=j)];//找集合Q( Q=G.V - S )里d[x]最小的那个点x
vis[x]=;//把点x放进集合S里
for(int y=;y<=n;y++)//把在集合Q里所有与点x相邻的点都找出来松弛,因为这里青蛙可以在任意来两石头间跳,所以直接遍历 G.V - S 即可
{
if(!vis[y]){
double tmp = max(d[x], edge[x][y]);
if(d[y] > tmp) d[y] = tmp;
}
}
}
return d[];
}
int main()
{
int kase=;
while(scanf("%d",&n) && n!=)
{
for(int i=;i<=n;i++) scanf("%d%d",&point[i].x,&point[i].y);
init();
printf("Scenario #%d\n",++kase);
printf("Frog Distance = %.3f\n\n",dijkstra());
}
}

堆优化的Dijkstra算法:

const int maxn=;
const int INF=0x3f3f3f3f; int n,m; //n个节点,m条边 struct Edge
{
int u,v,w;
Edge(int u,int v,int w){this->u=u,this->v=v,this->w=w;}
};
vector<Edge> E;
vector<int> G[maxn];
void init(int l,int r)
{
E.clear();
for(int i=l;i<=r;i++) G[i].clear();
}
void addedge(int u,int v,int w)
{
E.push_back(Edge(u,v,w));
G[u].push_back(E.size()-);
} bool vis[maxn];
int d[maxn]; //标记是否在集合S中
void dijkstra(int st)
{
for(int i=;i<=n;i++) d[i]=(i==st)?:INF;
memset(vis,,sizeof(vis)); priority_queue< pair<int,int> > Q; //此处的Q即集合Q,只不过由于那些d[i]=INF根本不可能被选到,所以就不放到优先队列中
Q.push(make_pair(,st));
while(!Q.empty())
{
int now=Q.top().second; Q.pop(); //选取集合Q中d[x]最小的那个点x
if(vis[now]) continue; //如果节点x已经在集合S中,就直接略过
vis[now]=; //将节点x放到集合S中,代表节点x的d[x]已经计算完毕
for(int i=;i<G[now].size();i++) //松弛从节点x出发的边
{
Edge &e=E[G[now][i]]; int nxt=e.v;
if(vis[nxt]) continue;
if(d[nxt]>d[now]+e.w)
{
d[nxt]=d[now]+e.w;
Q.push(make_pair(-d[nxt],nxt));
}
}
}
}

POJ 2253 - Frogger - [dijkstra求最短路]的更多相关文章

  1. poj 2253 Frogger dijkstra算法实现

    点击打开链接 Frogger Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 21653   Accepted: 7042 D ...

  2. POJ 2253 Frogger (求某两点之间所有路径中最大边的最小值)

    题意:有两只青蛙,a在第一个石头,b在第二个石头,a要到b那里去,每种a到b的路径中都有最大边,求所有这些最大边的最小值.思路:将所有边长存起来,排好序后,二分枚举答案. 时间复杂度比较高,344ms ...

  3. POJ - 2253 Frogger 单源最短路

    题意:给定n个点的坐标,问从第一个点到第二个点的最小跳跃范围.d(i)表示从第一个点到达第i个点的最小跳跃范围. AC代码 #include <cstdio> #include <c ...

  4. POJ 2253 Frogger(dijkstra 最短路

    POJ 2253 Frogger Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fion ...

  5. POJ. 2253 Frogger (Dijkstra )

    POJ. 2253 Frogger (Dijkstra ) 题意分析 首先给出n个点的坐标,其中第一个点的坐标为青蛙1的坐标,第二个点的坐标为青蛙2的坐标.给出的n个点,两两双向互通,求出由1到2可行 ...

  6. 最短路(Floyd_Warshall) POJ 2253 Frogger

    题目传送门 /* 最短路:Floyd算法模板题 */ #include <cstdio> #include <iostream> #include <algorithm& ...

  7. POJ 2253 Frogger ,poj3660Cow Contest(判断绝对顺序)(最短路,floyed)

    POJ 2253 Frogger题目意思就是求所有路径中最大路径中的最小值. #include<iostream> #include<cstdio> #include<s ...

  8. POJ 2253 Frogger (dijkstra 最大边最小)

    Til the Cows Come Home 题目链接: http://acm.hust.edu.cn/vjudge/contest/66569#problem/A Description The i ...

  9. 关于dijkstra求最短路(模板)

    嗯....   dijkstra是求最短路的一种算法(废话,思维含量较低,   并且时间复杂度较为稳定,为O(n^2),   但是注意:!!!!         不能处理边权为负的情况(但SPFA可以 ...

随机推荐

  1. 解决Spring Boot中,通过filter打印post请求的 request body 问题

    http://slackspace.de/articles/log-request-body-with-spring-boot/ (filter + RequestWrapper:最优雅的写法) ht ...

  2. 不用数据线连接到Android手机进行调试

    这两天USB线丢了,老是找同事借也不方便,于是就网上找各种方法,这里总结个最简单的,当然你的手机需要root: 1 要打开WIFI,手机要和电脑在同一局域网内,这个你可以使用你的开发机共享wifi即可 ...

  3. c 网络字节序和本机字节序转换

    将多字节整数类型的数据,从主机的字节顺序转化为网络字节顺序 #include <netinet/in.h> uint32_t htonl(uint32_t hostlong);uint16 ...

  4. Yarn执行流程

    在Yarn中,JobTracker被分为两部分:ResourceManager(RM)和ApplicationMaster(AM). MRv1主要由三部分组成:编程模型(API).数据处理引擎(Map ...

  5. linux-友好显示文件大小

    4850905319b / 1024 /1024/1024 = 4.6G ls -lh

  6. php curl那点事儿

    curl是最常用功能之一初始化句柄 $ch = curl_init(); post 传$data 1. 如果$data是字符串,则Content-Type是application/x-www-form ...

  7. SeaJS之use函数

    有了 define 等模块定义规范的实现,我们可以开发出很多模块.但光有一堆模块不管用,我们还得让它们能跑起来.在 SeaJS 里,要启动模块系统很简单: <script src=”path/t ...

  8. css笔记 - 张鑫旭css课程笔记之 vertical-align 篇

    支持负值的属性: margin letter-spacing word-spacing vertical-align 元素vertical-align垂直对齐的位置与前后元素都没有关系元素vertic ...

  9. jQuery缓存机制(四)

    Data封装的方法的后面四个方法 和 dataAttr方法阅读. Data.prototype = { key: function( owner ) {}, set: function( owner, ...

  10. sql management studio正则替换sql

    需要把create proc xxx替换为 drop proc xxx go create proc xxx 方法,使用正则查找替换 create procedure {\[dbo\]\.[^\(]+ ...