POJ 2253 - Frogger - [dijkstra求最短路]
Time Limit: 1000MS Memory Limit: 65536K
Description
Unfortunately Fiona's stone is out of his jump range. Therefore Freddy considers to use other stones as intermediate stops and reach her by a sequence of several small jumps.
To execute a given sequence of jumps, a frog's jump range obviously must be at least as long as the longest jump occuring in the sequence.
The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones.
You are given the coordinates of Freddy's stone, Fiona's stone and all other stones in the lake. Your job is to compute the frog distance between Freddy's and Fiona's stone.
Input
Output
Sample Input
2
0 0
3 4 3
17 4
19 4
18 5 0
Sample Output
Scenario #1
Frog Distance = 5.000 Scenario #2
Frog Distance = 1.414
题解:
参考:http://www.cnblogs.com/tanhehe/p/3169865.html
另外请参考:http://blog.csdn.net/PKU_ZZY/article/details/52434239
Dijkstra算法模板:
const int INF=0x3f3f3f3f;
const int maxn=; int n; //n个节点
int d[maxn],edge[maxn][maxn];
bool vis[maxn]; //标记是否在集合S中 /*
集合V:图上所有节点
集合S:已经确定正确计算出d[]的节点
集合Q:V-S
*/
void dijkstra()
{
for(int i=;i<=n;i++) d[i]=(i==)?:INF;
memset(vis,,sizeof(vis)); for(int i=;i<=n;i++)
{
int mini=INF,u;
for(int j=;j<=n;j++)
{
if(!vis[j] && d[j]<mini) mini=d[(u=j)]; //寻找集合Q里d[u]最小的那个点u
}
vis[u]=; //放入集合S for(int v=;v<=n;v++)
{
if(!vis[v]) dist[v]=min(dist[v],dist[u]+edge[u][v]); //对集合Q中,所有与点u相连接的点进行松弛
}
}
}
AC代码:
#include<cstdio>
#include<cmath>
#define N 205
#define INF 1e60
double max(double a,double b){return a>b?a:b;}
double edge[N][N],d[N];
struct Point{
int x,y;
}point[N];
int n;
bool vis[N];
double dist(Point a,Point b){
return sqrt( (b.y-a.y)*(b.y-a.y) + (b.x-a.x)*(b.x-a.x) );
}
void init()
{
for(int i=;i<=n;i++)
{
if(i==) d[]=0.0 , vis[]=;
else d[i]=dist(point[],point[i]) , vis[i]=; for(int j=i;j<=n;j++)
{
edge[i][j]=edge[j][i]=dist(point[i],point[j]);
}
}
}
double dijkstra()
{
for(int i=;i<=n;i++)
{
double min=INF;int x;
for(int j=;j<=n;j++) if(!vis[j] && d[j] <= min) min=d[(x=j)];//找集合Q( Q=G.V - S )里d[x]最小的那个点x
vis[x]=;//把点x放进集合S里
for(int y=;y<=n;y++)//把在集合Q里所有与点x相邻的点都找出来松弛,因为这里青蛙可以在任意来两石头间跳,所以直接遍历 G.V - S 即可
{
if(!vis[y]){
double tmp = max(d[x], edge[x][y]);
if(d[y] > tmp) d[y] = tmp;
}
}
}
return d[];
}
int main()
{
int kase=;
while(scanf("%d",&n) && n!=)
{
for(int i=;i<=n;i++) scanf("%d%d",&point[i].x,&point[i].y);
init();
printf("Scenario #%d\n",++kase);
printf("Frog Distance = %.3f\n\n",dijkstra());
}
}
堆优化的Dijkstra算法:
const int maxn=;
const int INF=0x3f3f3f3f; int n,m; //n个节点,m条边 struct Edge
{
int u,v,w;
Edge(int u,int v,int w){this->u=u,this->v=v,this->w=w;}
};
vector<Edge> E;
vector<int> G[maxn];
void init(int l,int r)
{
E.clear();
for(int i=l;i<=r;i++) G[i].clear();
}
void addedge(int u,int v,int w)
{
E.push_back(Edge(u,v,w));
G[u].push_back(E.size()-);
} bool vis[maxn];
int d[maxn]; //标记是否在集合S中
void dijkstra(int st)
{
for(int i=;i<=n;i++) d[i]=(i==st)?:INF;
memset(vis,,sizeof(vis)); priority_queue< pair<int,int> > Q; //此处的Q即集合Q,只不过由于那些d[i]=INF根本不可能被选到,所以就不放到优先队列中
Q.push(make_pair(,st));
while(!Q.empty())
{
int now=Q.top().second; Q.pop(); //选取集合Q中d[x]最小的那个点x
if(vis[now]) continue; //如果节点x已经在集合S中,就直接略过
vis[now]=; //将节点x放到集合S中,代表节点x的d[x]已经计算完毕
for(int i=;i<G[now].size();i++) //松弛从节点x出发的边
{
Edge &e=E[G[now][i]]; int nxt=e.v;
if(vis[nxt]) continue;
if(d[nxt]>d[now]+e.w)
{
d[nxt]=d[now]+e.w;
Q.push(make_pair(-d[nxt],nxt));
}
}
}
}
POJ 2253 - Frogger - [dijkstra求最短路]的更多相关文章
- poj 2253 Frogger dijkstra算法实现
点击打开链接 Frogger Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 21653 Accepted: 7042 D ...
- POJ 2253 Frogger (求某两点之间所有路径中最大边的最小值)
题意:有两只青蛙,a在第一个石头,b在第二个石头,a要到b那里去,每种a到b的路径中都有最大边,求所有这些最大边的最小值.思路:将所有边长存起来,排好序后,二分枚举答案. 时间复杂度比较高,344ms ...
- POJ - 2253 Frogger 单源最短路
题意:给定n个点的坐标,问从第一个点到第二个点的最小跳跃范围.d(i)表示从第一个点到达第i个点的最小跳跃范围. AC代码 #include <cstdio> #include <c ...
- POJ 2253 Frogger(dijkstra 最短路
POJ 2253 Frogger Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fion ...
- POJ. 2253 Frogger (Dijkstra )
POJ. 2253 Frogger (Dijkstra ) 题意分析 首先给出n个点的坐标,其中第一个点的坐标为青蛙1的坐标,第二个点的坐标为青蛙2的坐标.给出的n个点,两两双向互通,求出由1到2可行 ...
- 最短路(Floyd_Warshall) POJ 2253 Frogger
题目传送门 /* 最短路:Floyd算法模板题 */ #include <cstdio> #include <iostream> #include <algorithm& ...
- POJ 2253 Frogger ,poj3660Cow Contest(判断绝对顺序)(最短路,floyed)
POJ 2253 Frogger题目意思就是求所有路径中最大路径中的最小值. #include<iostream> #include<cstdio> #include<s ...
- POJ 2253 Frogger (dijkstra 最大边最小)
Til the Cows Come Home 题目链接: http://acm.hust.edu.cn/vjudge/contest/66569#problem/A Description The i ...
- 关于dijkstra求最短路(模板)
嗯.... dijkstra是求最短路的一种算法(废话,思维含量较低, 并且时间复杂度较为稳定,为O(n^2), 但是注意:!!!! 不能处理边权为负的情况(但SPFA可以 ...
随机推荐
- 为什么调用 FragmentPagerAdapter.notifyDataSetChanged() 并不能更新其 Fragment?【转载】
转载自:http://www.cnblogs.com/dancefire/archive/2013/01/02/why-notifyDataSetChanged-does-not-work.html ...
- RedHat6.5-Linux安装telnet服务
1 下载以下三个包 telnet-0.17-47.el6.x86_64.rpm(telnet客户端) telnet-server-0.17-47.el6.x86_64.rpm(telnet服务端) x ...
- Eclipse cdt解决github导入的项目无法打开声明的bug (cannot open declaration)
概述: 我利用eclipse 的git插件clone github上的远程项目(C++)到本地时遇到一个问题:clone下来的项目没有C++特性,无法使用open declaration等操作,下面是 ...
- mysql的wait_timeout配置(此处处理方法是有问题的,不建议作为操作参考)
mysql数据库有一个wait_timeout的配置,默认值为28800(即8小时). 在默认配置不改变的情况下,如果连续8小时内都没有访问数据库的操作,再次访问mysql数据库的时候,mysql数据 ...
- Ansible 使用 Playbook 管理 Nginx 配置文件
前面我们已经安装完 Nginx,但是在日常维护中经常需要修改配置文件,并重新加载配置文件,因此来写一个管理 Nginx 配置文件的 Playbook: [root@localhost ~]$ mkdi ...
- SaltStack 批量执行脚本
这里演示如何使用 salt-master 对多台 salt-minion 批量执行脚本,步骤如下: [root@localhost ~]$ cat /srv/salt/top.sls # 先定义入口配 ...
- N76E003之SPI
串行外围总线 (SPI)N76E003系列提供支持高速串行通信的SPI模块.SPI 为微控制与外设 EEPROM, LCD 驱动, D/A 转换之间提供全双工.高速.同步传输的总线.可提供主机从机模式 ...
- 使用IDEA实现tomcat的热加载
1.打开tomcat的edit configuration,一定要选择war exploded 2.选择update classes and resources 3.配置基本就是这样,后面选择de ...
- IOS 视频直播/智能家居(一行行敲代码,从零开始)lesson:1整体架构
本文转载至 http://blog.csdn.net/u014011807/article/details/47144027 前段时间由于工作需要做了一个视频直播/智能家居类的应用.算是对iOS音视频 ...
- C++中class与struct的区别(struct的类型名同时可以作为变量名)
通常我们知道的区别: (一)默认继承权限.如果不明确指定,来自class的继承按照private继承处理,来自struct的继承按照public继承处理: (二)成员的默认访问权限.class的成员默 ...