2.0CNN
介绍
https://www.youtube.com/watch?v=jajksuQW4mc
https://www.youtube.com/watch?v=2-Ol7ZB0MmU
https://www.youtube.com/watch?v=H3ciJF2eCJI
卷积神经网络---图片识别,视频分析、语音识别
参考谷歌youtube上提供的CNN视频演示
数据组织形式
计算机识别的不是颜色本身,而是由颜色组成的矩阵
如果是黑色的话,矩阵的维度为2维
如果是彩色的话,矩阵的维度是3维度,还有一个RGB通道来表示颜色
卷积神经网络结构
卷积的图示理解
用一个XYK的长方体矩阵去依次经过原始数据的每一块,这就是简单的卷积操作,也是一种对矩阵的操作
另:stride 表示一次跨几步
不断压缩长和宽,而增加厚度
跨度太长的话会丢掉一些信息
所以将跨度设置的小一些,通过pooling变成和上述跨度一样大的形状
一种maxpooling 一种averagepooling
如何设计卷积神经网络?
给一张图片image
全连接层就类比于普通神经网络的隐层或隐藏层
CNN代码实战MNIST手写体识别数据集
python2和3均可执行
"""
Please note, this code is only for python 3+. If you are using python 2+, please modify the code accordingly.
"""
from __future__ import print_function
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# number 1 to 10 data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True) def compute_accuracy(v_xs, v_ys):
global prediction
y_pre = sess.run(prediction, feed_dict={xs: v_xs, keep_prob: 1})
correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep_prob: 1})
return result def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial) def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial) def conv2d(x, W):
# stride [1, x_movement, y_movement, 1]
# Must have strides[0] = strides[3] = 1
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x):
# stride [1, x_movement, y_movement, 1]
return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME') # define placeholder for inputs to network
xs = tf.placeholder(tf.float32, [None, 784])/255. # 28x28
ys = tf.placeholder(tf.float32, [None, 10])
keep_prob = tf.placeholder(tf.float32)
x_image = tf.reshape(xs, [-1, 28, 28, 1])
# print(x_image.shape) # [n_samples, 28,28,1] ## conv1 layer ##
W_conv1 = weight_variable([5,5, 1,32]) # patch 5x5, in size 1, out size 32
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # output size 28x28x32
h_pool1 = max_pool_2x2(h_conv1) # output size 14x14x32 ## conv2 layer ##
W_conv2 = weight_variable([5,5, 32, 64]) # patch 5x5, in size 32, out size 64
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # output size 14x14x64
h_pool2 = max_pool_2x2(h_conv2) # output size 7x7x64 ## fc1 layer ##
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
# [n_samples, 7, 7, 64] ->> [n_samples, 7*7*64]
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) ## fc2 layer ##
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) # the error between prediction and real data
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),
reduction_indices=[1])) # loss
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) sess = tf.Session()
# important step
# tf.initialize_all_variables() no long valid from
# 2017-03-02 if using tensorflow >= 0.12
if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1:
init = tf.initialize_all_variables()
else:
init = tf.global_variables_initializer()
sess.run(init) for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: 0.5})
if i % 50 == 0:
print(compute_accuracy(mnist.test.images, mnist.test.labels))
结果显示:经过100步已经可以达到75%了,效果也很明显
2.0CNN的更多相关文章
随机推荐
- pyqt与拉勾网爬虫的结合
人力部需要做互联网金融行业的从业人员薪酬分析,起初说的是写脚本,然后他们自己改.但这样不太好,让人事部来修改py脚本不太好,这需要安装py环境和一些第三方包,万一脚本改来改去弄错了,就运行不起来了. ...
- sql语句 case when then else end 语句实例
表中有A B C三列,用SQL语句实现:当A列大于B列时选择A列否则选择B列,当B列大于C列时选择B列否则选择C列. ----------------------------------------- ...
- java.lang.Class<T> -- 反射机制及动态代理
Interface : Person package java_.lang_.component.bean; public interface Person { String area = " ...
- mysql的in查询分析
群里山楂大仙和电台大神探讨到mysql的in查询的问题,问题如下: student表有class_id的索引,但是只查询一个的时候用索引,查两个就不用索引了 这是很奇怪的现象,我试了一下也是这样,真是 ...
- 基于端口的弱口令检测工具--iscan
亲手打造了一款弱口令检测工具,用Python编写,主要可以用于内网渗透.弱口令检测等方面,目前集成了常见端口服务,包含 系统弱口令:ftp.ssh.telnet.ipc$ 数据库弱口令:mssql.m ...
- tablayout在中间显示
<android.support.design.widget.TabLayout android:id="@+id/tabLayout" android:layout_wid ...
- Onpaint和OnDraw的区别
(一) OnPaint 和 OnDraw (1)OnPaint是WM_PAINT消息的消息处理函数,在OnPaint中调用OnDraw,一般来说,用户自己的绘图代码应放在OnDraw中. (2)OnP ...
- LINK : warning LNK4098: 默认库“LIBCMT”与其他库的使用冲突;请使用 /NODEFAULTLIB:library
解决方法 属性=>配置属性=>输入=>忽略特定库LIBCMT
- codeforces水题100道 第二十题 Codeforces Round #191 (Div. 2) A. Flipping Game (brute force)
题目链接:http://www.codeforces.com/problemset/problem/327/A题意:你现在有n张牌,这些派一面是0,另一面是1.编号从1到n,你需要翻转[i,j]区间的 ...
- secureCRT使用退格键(backspace)出现^H解决办法
解决办法步骤如下: 选项--->会话选项---> 把下面两个打个钩就行了. 原文地址:http://skykiss.blog.51cto.com/blog/2892603/769771 另 ...